PHYSICAL REVIEW E 70, 036606(2004)

Coupled dipole method for scatterers with large permittivity
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In the coupled dipole method, a three-dimensional scattering object is discretized over a lattice into a set of
polarizable units that are coupled self-consistently. Starting from the volume integral equation for the field, we
show that performing the integration of the free-space field susceptibility tensor over the lattice cell dramati-
cally improves the accuracy of the method when the permittivity of the object is large. This integration, done
without any approximation, allows us to define a prescription for the polarizability used in the coupled dipole
method. Our derivation is not restricted to any particular shape of the scatterer or to a cubic discretization
lattice.
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I. INTRODUCTION izability and compare it to previous prescriptions. Finally, in

The scattering of an electromagnetic wave by an arbitrary>€C- IV We present our conclusions. The details of the com-
three-dimensional scatterer is a complex probiem of centra_FI’Utat'On of the_ integrated field susceptibility tensor are given
importance in optics and photonics. Aside from a few par-n the Appendix.
ticular systems, the interaction of electromagnetic waves
with an arbitrary object eludes an analytical representation Il. THEORY
and numerical methods are needed. Many such methods have
been developed and we refer the reader to the detailed review Let E%w) be the electric field associated with an electro-
by Kahnert[1] where the strengths and weaknesses of eachagnetic wave impinging on an arbitrary objéfdr the sake
method are discussed. of simplicity we will assume that the object is nonmagngetic

In this article we consider one such three-dimensionalThe incident field induces a polarization inside the object.
scattering approach called the coupled dipole methodhe self-consistent electric field inside the object reads
(CDM). This method was introduced by Purcell and Penny-
packer [2] to study the scattering of light by interstellar _ o <, , , ,
grains with arbitrary shapes. It has been used to computg(r'“’)_E (r,w)+fVG(r,r (' w)E(r,w)dr’, (1)
cross section§3], optical forceg4—6], near-field light scat-
tering [7], and spontaneous emissig8]. The theoretical where the integration is performed over the volume of the
foundation of the CDM relies on the fact that when an objeciobject. E(r’,w) is the macroscopic field inside the object,
interacts with an electromagnetic field it develops a polarizay(r’, ) is the linear susceptibility of the object which we
tion. If one considers a small enough volume inside the oby|| suppose to be homogeneous, i.e.,
ject, the induced polarization is uniform within this volume,
and hence that small region can be represented by an electric , e(w)-1
dipole with the appropriate polarizability. Therefore, any ob- x(r', ) = x(o) = a4 (2)
ject can be discretized as a collection of dipolar subunits. In
this article we show that accounting for finite size effects forwhere e(w) is the relative permittivity of the object, and
the subunits significantly improves the description of lightG(; ' o) is the free-space electric field susceptibility ten-
scattering by arbitrary objects. Our formulation of the CDM ¢ \vhich can be written 49
is obtained through the integration of the field susceptibility”

tensor over the volume associated with the dipole, hence < k| [2ROR =1 kg
defining a different form for the polarizability. The formula- G(rr',w) =€ |3 R2 | B R

tion of the CDM derived here improves the accuracy of the

method when dealing with scatterers with large permittivi- N (r_ R® R)k_g} B AiTré(R) 3)
ties, a situation where the conventional CDM performs RZ /R 3 ’

poorly.

In Sec. Il we describe our formulation of the CDM. In With R=r—r’, k; the modulus of the wave vector in vacuum,
Sec. Il we test the accuracy of this formulation of the polar-and | the unit tensor. To solve E@l) numerically we dis-
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cretize the object into a set df subunits arranged on a cubic is that if one computes the cross section using ([Bj.one
lattice (for simplicity, but our approach holds for any arbi- gets an incorrect result. This is due to the fact that the optical

trary orthogonal lattice hence Eq(1) becomes theorem is not satisfied. A radiation reaction term must be
N introduced in the expression of the polarizability to satisfy
Ero) =Er0)+ 3 | Grr ox@Er o, (4 N©opicalieorem3.ig;

=L oj(w) = a(w)/[1 - (2/3)ikoaf()]. 9
To ;olve Eq(l)_numerlc.ally we need to make some approxi- 1o importance of including the radiation reaction term in
mations. The first one is usually to assume that the electro; o . ; L

e . . o he polarizability is also discussed in detail in Reffs,11]
magnetic field is uniform over one subunit, which is a good . .

R L Several ideas have been put forward to improve the accuracy
approximation if the subunit is smaller than the wavelength :
ST . . of the CDM[12-15. These approaches have in common that
inside the object. Then E@4) can be written as ; : : .

they all start from the Clausius-Mossotti relation and simply
- add a finite-frequency correction. They also suppose that the

E(ri,w) =E%r;,w) + > (f G(ri,r’,w)dr’)X(w)E(rj,w). field susceptibility tensor is constant over any given subunit.
=AY, Recently, it was pointed out that the Clausius-Mossaotti rela-

(5)  tion may not hold for every subunit; rather, for each subunit

the polarizability should be related to its local environment

Equation(5) is the starting point of our method. In the origi- [16,17. However, so far this approach has been restricted to
nal form of the CDM, another approximation is made: thespecial geometries.

field sysceptibility.tensor is taken to be constant over any |, this paper we propose a formulation of the scattering
subunit. This entails that process that accounts for the geometry of the scatterer with-

N

N out being restricted to a particular set of shapes. Going back
E(rj,w) =E%r;,0) + >, G(ri,rj, 0 x(0)E(rj, ) to Eg. (5), instead of the usual approach described previ-
j=1,j#i ously, we compute the volume integration of the free-space
elw) -1 susceptibility numerically. Equatiofb) thus becomes
- E(rj,w). 6
3 e © E(r,0) = E%r;, o)
If we factorize the terms corresponding to the indewe get N -
N + > f G(ri,r’,w)dr’ | x(w)E(rj,»)
- 0 ji=Li=i \Jv;
E'(r,0)=E%r,0) + 2 G(rr,o)a)(wE(r,0)  (7)
= +(f é’(ri,r',w)dr')xm)E(ri,w). (10
with Vi
() = 3 &(w) - 1V-. ®) The Hintegrated tensor is defined aéi”‘(ri,rj,w)
! dre(w)+2 " :ijG(ri,r’,w)dr’. We have isolated the diagonal ter(in

Equation(8) is the Clausius-Mossotti relation for the polar- =) @S, whereas the case | is easy to perform numerically,
izability of the cubic subunij and E'=[(+2)/3]E is the the diagonal term needs particular attention. To compute the

local field expressed in terms of the macroscopic field. Equalast term of Eq(10), G™(r;,r;,w), a Weyl expansion of the
tion (7) is the original form of the CDM introduced by Pur- tensor is performed. After a tedious derivation we can write
cell and Pennypackg®]. The problem with this formulation this term as

v

- 164 (0 —K3(1 —eWori2) —w2eWodi2| 2 gin(k cos AA/2)sin(K SINOA/2
G'nt(ri,ri,w):_|{J il ) =W f intky ISINKGSINGAT2) 4 |

Wp=0 Wo 6=0 kIZJCOSﬁ sin @

. Jm kg_ (kg+ﬁ2)e—BA/2|:JW/2 S|n(ke(;050A/2)S|n(keS|n0A/2)d0:| dlg}’ (11)

=0 B 4=0 kicos 6 sin 6

with k,=k3-w3, k.=\ki+3% and A the lattice spacing. cally in an efficient way. Further details on the derivation of
Equation(11) does not contain any approximations. To our Eq. (11) are given in the Appendix.

knowledge this is the first time th&™(r;,r;,») has been When A tends toward 0, we find that
expressed in an exact form which can be computed numerlim,_G™(r;,r;,w)=—=(4m/3)l which is the depolarization
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factor computed at the center of a cube as given by Yaghjiasphere, as an analytic solution is known in the form of a Mie
[18]. After some work, Eq(10) can be written in the form series, but we emphasize that the method presented here does
introduced by Purcell and Pennypackar: not depend on the shape of the scatterer. We will compare
our results to the extinction, absorption, and scattering effi-

N .
G™(ri,rj, o) ciencies computed after using the Mie solution. The compu-
ey — Oy - e P (e, '
Eri,w) =EXri,w) + -}#i v, (@B (), (12) i of the cross sections with the CDM is performed using
= Eq. (3.0) of Ref. [3] for the extinction, and Eq3.06) of
where the local field is defined by Ref. [3] for the absorption, i.e.,
[ — 7 _ Sint e(w) -1 Ak o .
E(ri,w)—<| G™(r;,ri, ) . )E(ri,w)- (13 Cext=ﬁ2|m[E°(rj,w)-p (rj, )], (15)
j=1
Notice that wheﬁi“t(ri,ri,w) reduces to(—47r/3)rwe re- "
cover the definition of the local field that we derived previ- 4k, )
ously. The polarizability of the subuniitis now expressed as Cabs= |Eo_|221 [p(rj, @) Im ai(w) - §kg - (19
= i

int -1
1- Glrjriw+ 477/30(]-0((»)) . (14  The scattering cross section is obtained as the difference be-
V,;

aj(w) = a?(w)( J LI )
j tween the extinction and absorption cross sect{@hsIf we

In the present study the subunit has a cubic shape and th&® thfe polari;gbilityhdefingd by EdL4), Eq. (15 is alwar)]/s
medium is isotropic; hence the polarizability is a scalar. InUS€d for obtaining the extinction cross section, but the ab-

Eq. (12), the quantitya,—(w)E'(rj,w):p(rj,w) is the dipole sorption cross section is now computed as

moment of subunif induced by the incident field and the Amkq N

field scattered by all other subunits. Working with the local Caps= =13 2 |E'(r},0)[HIm[a;(w)]

field is very convenient if one wants to evaluate the optical |Eql =1

forces[5,6]. Yet there exist other approaches, such as the _ Im[G‘”t(rJ-,rj,w)]|aj(w)|2}, (17)

method of moment$MOM), that use the macroscopic field _
instead. In most three-dimensional implementations, thavhere IMG™(r;,r;, »)] represents the energy lost by a radi-
MOM simply amounts to solving Eq6), which is formally  ating dipole. We will compare the present formulatigm
equivalent to the CDM12,19 Eq. (7). However, only in the for integrated tensgrof the polarizability to other known
special case of two-dimensional objects in a stratified meprescriptions. We will consider the usual CDM with radia-
dium, has the integration of the field susceptibility tensortion reaction(RR) correction[Eq. (9)], the lattice disper-
over the subunits been propos]. sion relation(LDR) [15], and the polarizability defined by

If we perform a Taylor expansion of the imaginary part Lakhtakia(LAK) [12]. Lakhtakia defines the polarizability
of G"(ri,rj,0) with respect to kyA, we obtain by integrating the field susceptibility over a spherical region
Im[G‘”‘(ri,ri,w)/Vi]z(2/3)k8. Hence the radiation reaction of the same volume as the cubic suby®]. In that case the
term that is usually added to the Clausius-Mossotti polarizpolarizability is analytical. To check the validity of the ap-
ability appears naturally in our formulation. This radiation proximation done by Lakhtakia, we will compute the cross
reaction term represents the damping of the dipole by itsections with Eq(14) for the definition of the polarizability,
self-field. As the dipole oscillates, it generates an electrid.e., by integrating only the diagonal elements of the tensor
field Eggat its location. The part of the electric field that is in (IDT).
quadrature with the dipole oscillations performs work on the The sphere is discretized intbl=2320 subunits. We
dipole which dampens its oscillations. For a point dipole wepresent in Figs. 1 and 2 the relative error in percent between
haveERR:i(2/3)k8p [9]. In our case, due to the finite size of Mie and the different method used y_eré,uisk@, wheren is
the subunit, the radiation reaction field is directly connectedhe refractive index of the objeat=ve (|n|kyA large corre-
to the integration of the imaginary part of the free-space fieldponds to a large value d). _ _
susceptibility:ERR:iIm[éi“t(ri,ri,w)/Vi]p. In Fig. 1 we have tak_e19:2.25+1. We first observe that

We have performed the quadrature over a cubic subunitl€ integration of the d|agonz_al term onipT) Iea_ds 0 a
but the quadrature can be done over a parallelepiged the result very close to that obtglnec_j with the polar|zab|I|§y of

. Zint _ Lakhtakia. Thus, the approximation made by Lakhtakia by

Appendiy. In that case™(r;,rj, ) would always be a di- onjacing the cube by a sphere is valid. Then, we notice that
agonal tensor but the elements of the diagonal can be diffefe jntegration of the field susceptibility tensor for all terms
ent[see Eq(A8) of the Appendi}. Such a lattice geometry (1) yields an overall slightly more accurate cross section.
would, for instance, be useful to study the scattering of light |,'rig 2 we perform the same calculation but for a large
by an object with significantly different extensions in the rg|ative permittivity:e=10+10. The IDT result is still close
three directions of space. to the one given by the Lakhtakia method. We see that the IT
method is better for all the cross sections from small values
of [n|koA until |n|kyA=~0.3. The fact that the IT method is

To test the accuracy resulting from the integration of thebetter for small|n|koA is always true irrespective of the
tensor we study the scattering of light by a homogeneousalue of the relative permittivityin Fig. 1 due to the small

Ill. RESULTS
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FIG. 1. Scattering properties of a pseudosphere Wit2320
and e=n?=2.254. Relative error(in percent for the extinction, FIG. 3. Relative errofin percent for the extinction cross sec-
absorption, and scattering cross sections between different methotign for [n|kpA=0.02 versus Re) for three different values of
and the exact Mie result. The relative error is plotted versus thdm(e). Solid line, radiation reaction correctiaiRR); dashed line,
normalized lattice spacin@p| koA, wherek, is the free-space wave computation done by integrating all the elements of the field sus-
vector of the incident light. Dotted line, radiation reaction correc- ceptibility tensor(IT).
tion (RR); dash-dotted line, lattice dispersion relatighDR);
dashed line, polarizability is defined by integrating only the diago-  To be more general, Fig. 3 presents the error on the ex-
nal element of the tens@tDT); solid line, computation is done by tinction cross section for a givem|kyA=0.02, versus the
integrating all the elements of the field susceptibilities tetsby.  rea| part of the relative permittivity for three different imagi-
The curves Wlth the symbol + .pertaln to calculations using thenary part of the relative permittivity: Ite)=2, 5, and 10. We
polarizability defined by Lakhtakia. compare the IT result to the standard calculation accounting
only for the radiation reaction terfRR). Note that all the
value of the relative permittivity this is true only until other prescriptions of the polarizability are equivalent to RR
In[kopA=0.1). When the size of the subunit is very small for this small value ofn|koA. Figure 3 shows clearly that the
compared to the wavelength, the field susceptibility tensofT method leads to a better estimate of the cross section. This
G(rj,rj, ) for rj in the vicinity of r; varies as 1|/rj—ri|3; is particularly true when the polarizability has a small imagi-
hence the approximation of a uniform field susceptibility ten-nary part(2) and a large real part50). In that case the
sor over the subunit does not hold. Therefore, the integratiorelative error is about 200% for RR whereas the IT calcula-
of é(r,-,rj,w) allows us to go beyond this approximation. tion gives a relative error below 15%. We can even see some

For any given value ofn|k,A, different relative permittivi- oscillations _in the RR method due to m(_)rphol_ogical reso-
ties correspond to different sizes of the subunit, the size dd@nces, which are usually hard to describe with the CDM

creasing when the relative permittivity increases. This is thdVNen the imaginary part of the permittivity is small. These

reason why the difference between the IT and the other reoscillations are not present in the IT calculation, which dem-

sults is more visible in Fig. 2 where the relative permittivity OnStrates the robustness of our present prescription for the
is larger. polarizability. In fact, irrespective of Ife), the IT method

gives the same relative error for Re¢=50, less than 15%.
Notice that for the sake of computation time we use a small
numberN of subunits; however, increasimgwould decrease
the relative error.

o 02 0.4 06 08 1 IV. CONCLUSION

In conclusion we have derived a prescription for the po-
larizability in which the interaction of each subunit with it-
self is treated by accounting for its finite volume, through the
integration of the full field susceptibility tensor over the sub-
unit. This integration is performed without any approxima-
tion. In doing this we validate the approximations used by
Lakhtakia in his derivation of a polarizability with finite-size
effects. Our derivation is, however, more general and can be
applied to a formulation of the coupled dipole method with a
noncubic orthogonal lattice. It should be possible to extend
our approach to a case where the subunits have arbitrary

Relative error in percent

0.8 1

0:4 0.6
|n|k0d
FIG. 2. Same as Fig. 1 but fer=n?=10+10.
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shapes; however, in such a case the polarizability tensor maie integral converges very slowly, as the integrand varies as
not be diagonal. We showed that integrating the full field1/k when k,.k, tend to infinity. To solve this problem of
susceptibility tensor increases the accuracy of the CDMonvergence we use the following relation:

when the size of the subunit is small compared to the wave-

length in the medium. These results are particularly dramatic f ak, kysin(kXAIZ)sin(kyAIZ)

- kdky

when the relative permittivity becomes large, a situation === =—47x. (AD)

where the conventional formulation of the CDM performs Tk
very poorly. Finally, we emphasize that the approach pre-

sented here is not restricted to any particular geometry of thilow if we move to polar coordinate®kdk =kdkd), we

scatterer. have
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APPENDIX: COMPUTATION OF THE DIAGONAL TERM X sin(k cos 129A/2)S|n'(k SingA/2) . (AB)
OF THE FREE-SPACE FIELD SUSCEPTIBILITY k® cos 6sin¢
A Weyl expansion of the tensd yields [21] This new integrand converges askd ivhenk tends to infin-
dicdk, ity; hence a fast convergence is obtained. However, when
G(r,,r )—— f M =k, we havewy=0 and the integrand is not defined. This
value corresponds to the transition from propagating to eva-

. . nescent mode& > ky). We change the variable of integration
x @lilki=x kg iy )+iwolz=2'[1H | — A s(r, —r") to wo and usekdk=-wydw,. Using parity considerations we
finally get
Al
with (A1) 16
GM(rir,w)=—
kg_k?( _kxky = YWoky ( @) = 7T< )
o 2 2 _
M=1 kdy Ko k>2’ W\Zloky ’ (A2) sm(k cos 6A/2)sin(k sinfA/2)
~ Mok — Migky K % k2cos 6 sing
wherey=sgr(z-z'), wo=Vkj—k? andk?=k;+k. Using Eq. k2 woA/2

(A1), the integrated tensor over a subunit is defined as

6int(ri,ri'w):|:J d3 ' f k)(d'ffe
v 2w

—dw,. (A7)
Wo

Equation(A7) is the sum of two integrals. The first one is the
integration over the propagating mode,=0, ... k;) and
% e{i[kx(xi—x’)+ky(yi—y’)+iWoA—Z’]}] —dar (A3) the second one that over the evanescent modg
=0, ... ,ix). Therefore Eq(A7) is defined irrespective of the
values ofw, k, and 6. With a little algebra, Eq(A7) can be
d written as Eq.(11) where for the sake of clarity we have
Zwlf MM[ o’ separated thg (twg integrals. g
If the subunit is not a cube but a parallelepiped X A,

Xe{i[kx(xi_X,)+ky(yi_y,)+iW0Zi_zll]}:| 4. X A,), a similar derivation yields

_ . . . . '”‘(r..r.,w)
It is easy to perform the integration over the spatial coordi- _
nates using\ as the spacing lattice of the subu=A3). _ 16 '°°
Incidentally, one can note that the nondiagonal terms of the T *
integrated tensor vanish, and that the componextgy, and Wosko o=

zzare physically identical. Hence, with,,=k?, we obtain y [f”z 40 _sin(k cos 6A,/2)sin(k sin §A,/2)
2
4 sin(kA/2)sin(k,A/2 6=0 k® cos @ sin ¢
Gmt(r“r“w)__ f dkxdk), n( X ) ( Y ) -
| Jk Kiky k(Z) — K2gWoAZ2
X dwp, (A8)
k2 eIW A2 Wo
1+¢"o A4
W2( ) (A4)

whereG(r;,r;, ) andGyy(r;, 1, ) are obtained by permu-
The problem in computing this integral numerically is thattation of the indicex,y,z
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