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In the coupled dipole method, a three-dimensional scattering object is discretized over a lattice into a set of
polarizable units that are coupled self-consistently. Starting from the volume integral equation for the field, we
show that performing the integration of the free-space field susceptibility tensor over the lattice cell dramati-
cally improves the accuracy of the method when the permittivity of the object is large. This integration, done
without any approximation, allows us to define a prescription for the polarizability used in the coupled dipole
method. Our derivation is not restricted to any particular shape of the scatterer or to a cubic discretization
lattice.
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I. INTRODUCTION

The scattering of an electromagnetic wave by an arbitrary,
three-dimensional scatterer is a complex problem of central
importance in optics and photonics. Aside from a few par-
ticular systems, the interaction of electromagnetic waves
with an arbitrary object eludes an analytical representation
and numerical methods are needed. Many such methods have
been developed and we refer the reader to the detailed review
by Kahnert[1] where the strengths and weaknesses of each
method are discussed.

In this article we consider one such three-dimensional
scattering approach called the coupled dipole method
(CDM). This method was introduced by Purcell and Penny-
packer [2] to study the scattering of light by interstellar
grains with arbitrary shapes. It has been used to compute
cross sections[3], optical forces[4–6], near-field light scat-
tering [7], and spontaneous emission[8]. The theoretical
foundation of the CDM relies on the fact that when an object
interacts with an electromagnetic field it develops a polariza-
tion. If one considers a small enough volume inside the ob-
ject, the induced polarization is uniform within this volume,
and hence that small region can be represented by an electric
dipole with the appropriate polarizability. Therefore, any ob-
ject can be discretized as a collection of dipolar subunits. In
this article we show that accounting for finite size effects for
the subunits significantly improves the description of light
scattering by arbitrary objects. Our formulation of the CDM
is obtained through the integration of the field susceptibility
tensor over the volume associated with the dipole, hence
defining a different form for the polarizability. The formula-
tion of the CDM derived here improves the accuracy of the
method when dealing with scatterers with large permittivi-
ties, a situation where the conventional CDM performs
poorly.

In Sec. II we describe our formulation of the CDM. In
Sec. III we test the accuracy of this formulation of the polar-

izability and compare it to previous prescriptions. Finally, in
Sec. IV we present our conclusions. The details of the com-
putation of the integrated field susceptibility tensor are given
in the Appendix.

II. THEORY

Let E0svd be the electric field associated with an electro-
magnetic wave impinging on an arbitrary object(for the sake
of simplicity we will assume that the object is nonmagnetic).
The incident field induces a polarization inside the object.
The self-consistent electric field inside the object reads

Esr ,vd = E0sr ,vd +E
V

GJ sr ,r 8,vdxsr 8,vdEsr 8,vddr 8, s1d

where the integration is performed over the volume of the
object. Esr 8 ,vd is the macroscopic field inside the object,
xsr 8 ,vd is the linear susceptibility of the object which we
will suppose to be homogeneous, i.e.,

xsr 8,vd = xsvd =
«svd − 1

4p
, s2d

where «svd is the relative permittivity of the object, and

GJ sr ,r 8 ,vd is the free-space electric field susceptibility ten-
sor, which can be written as[9]

GJ sr ,r 8,vd = esik0RdFS3
R ^ R

R2 − IJDS 1

R3 −
ik0

R2D
+ SIJ−

R ^ R

R2 Dk0
2

R
G −

4p

3
IJdsRd, s3d

with R=r −r 8, k0 the modulus of the wave vector in vacuum,

and IJ the unit tensor. To solve Eq.(1) numerically we dis-
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cretize the object into a set ofN subunits arranged on a cubic
lattice (for simplicity, but our approach holds for any arbi-
trary orthogonal lattice); hence Eq.(1) becomes

Esr ,vd = E0sr ,vd + o
j=1

N E
Vj

GJ sr ,r 8,vdxsvdEsr 8,vddr 8. s4d

To solve Eq.(1) numerically we need to make some approxi-
mations. The first one is usually to assume that the electro-
magnetic field is uniform over one subunit, which is a good
approximation if the subunit is smaller than the wavelength
inside the object. Then Eq.(4) can be written as

Esr i,vd = E0sr i,vd + o
j=1

N SE
Vj

GJ sr i,r 8,vddr 8DxsvdEsr j,vd.

s5d

Equation(5) is the starting point of our method. In the origi-
nal form of the CDM, another approximation is made: the
field susceptibility tensor is taken to be constant over any
subunit. This entails that

Esr i,vd = E0sr i,vd + o
j=1,jÞi

N

GJ sr i,r j,vdxsvdEsr j,vd

−
«svd − 1

3
Esr i,vd. s6d

If we factorize the terms corresponding to the indexi, we get

Elsr i,vd = E0sr i,vd + o
j=1,jÞi

N

GJ sr i,r j,vda j
0svdElsr j,vd s7d

with

a j
0svd =

3

4p

«svd − 1

«svd + 2
Vj . s8d

Equation(8) is the Clausius-Mossotti relation for the polar-
izability of the cubic subunitj and El =fs«+2d /3gE is the
local field expressed in terms of the macroscopic field. Equa-
tion (7) is the original form of the CDM introduced by Pur-
cell and Pennypacker[2]. The problem with this formulation

is that if one computes the cross section using Eq.(8) one
gets an incorrect result. This is due to the fact that the optical
theorem is not satisfied. A radiation reaction term must be
introduced in the expression of the polarizability to satisfy
the optical theorem[3,10]:

a jsvd = a j
0svd/f1 − s2/3dik0a j

0svdg. s9d

The importance of including the radiation reaction term in
the polarizability is also discussed in detail in Refs.[5,11]
Several ideas have been put forward to improve the accuracy
of the CDM[12–15]. These approaches have in common that
they all start from the Clausius-Mossotti relation and simply
add a finite-frequency correction. They also suppose that the
field susceptibility tensor is constant over any given subunit.
Recently, it was pointed out that the Clausius-Mossotti rela-
tion may not hold for every subunit; rather, for each subunit
the polarizability should be related to its local environment
[16,17]. However, so far this approach has been restricted to
special geometries.

In this paper we propose a formulation of the scattering
process that accounts for the geometry of the scatterer with-
out being restricted to a particular set of shapes. Going back
to Eq. (5), instead of the usual approach described previ-
ously, we compute the volume integration of the free-space
susceptibility numerically. Equation(5) thus becomes

Esr i,vd = E0sr i,vd

+ o
j=1,jÞi

N SE
Vj

GJ sr i,r 8,vddr 8DxsvdEsr j,vd

+ SE
Vi

GJ sr i,r 8,vddr 8DxsvdEsr i,vd. s10d

The integrated tensor is defined asGJ intsr i ,r j ,vd
=eVj

GJ sr i ,r 8 ,vddr 8. We have isolated the diagonal termsi
= jd as, whereas the casei Þ j is easy to perform numerically,
the diagonal term needs particular attention. To compute the

last term of Eq.(10), GJ intsr i ,r i ,vd, a Weyl expansion of the
tensor is performed. After a tedious derivation we can write
this term as

GJ intsr i,r i,vd =
16

p
IJHE

w0=0

k0 − k0
2s1 − eiw0D/2d − w0

2eiw0D/2

w0
FE

u=0

p/2 sinskpcosuD/2dsinskpsinuD/2d
kp

2cosu sin u
duGdw0

+E
b=0

` k0
2 − sk0

2 + b2de−bD/2

b FE
u=0

p/2 sinskecosuD/2dsinskesinuD/2d
ke

2cosu sin u
duGdbJ , s11d

with kp=Îk0
2−w0

2, ke=Îk0
2+b2, and D the lattice spacing.

Equation(11) does not contain any approximations. To our

knowledge this is the first time thatGJ intsr i ,r i ,vd has been
expressed in an exact form which can be computed numeri-

cally in an efficient way. Further details on the derivation of
Eq. (11) are given in the Appendix.

When D tends toward 0, we find that

limD→0GJ
intsr i ,r i ,vd=−s4p /3dIJ which is the depolarization
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factor computed at the center of a cube as given by Yaghjian
[18]. After some work, Eq.(10) can be written in the form
introduced by Purcell and Pennypacker[2]:

Elsr i,vd = E0sr i,vd + o
j=1,jÞi

N
GJ intsr i,r j,vd

Vj
a jsvdElsr j,vd, s12d

where the local field is defined by

Elsr i,vd = SIJ− GJ intsr i,r i,vd
«svd − 1

4p
DEsr i,vd. s13d

Notice that whenGJ intsr i ,r i ,vd reduces tos−4p /3dIJ we re-
cover the definition of the local field that we derived previ-
ously. The polarizability of the subunitj is now expressed as

a jsvd = a j
0svdS1 −

Gintsr j,r j,vd + 4p/3

Vj
a j

0svdD−1

. s14d

In the present study the subunit has a cubic shape and the
medium is isotropic; hence the polarizability is a scalar. In
Eq. (12), the quantitya jsvdElsr j ,vd=psr j ,vd is the dipole
moment of subunitj induced by the incident field and the
field scattered by all other subunits. Working with the local
field is very convenient if one wants to evaluate the optical
forces [5,6]. Yet there exist other approaches, such as the
method of moments(MOM), that use the macroscopic field
instead. In most three-dimensional implementations, the
MOM simply amounts to solving Eq.(6), which is formally
equivalent to the CDM[12,19] Eq. (7). However, only in the
special case of two-dimensional objects in a stratified me-
dium, has the integration of the field susceptibility tensor
over the subunits been proposed[20].

If we perform a Taylor expansion of the imaginary part
of Gintsr i ,r i ,vd with respect to k0D, we obtain
ImfGintsr i ,r i ,vd /Vig<s2/3dk0

3. Hence the radiation reaction
term that is usually added to the Clausius-Mossotti polariz-
ability appears naturally in our formulation. This radiation
reaction term represents the damping of the dipole by its
self-field. As the dipole oscillates, it generates an electric
field ERRat its location. The part of the electric field that is in
quadrature with the dipole oscillations performs work on the
dipole which dampens its oscillations. For a point dipole we
haveERR= is2/3dk0

3p [9]. In our case, due to the finite size of
the subunit, the radiation reaction field is directly connected
to the integration of the imaginary part of the free-space field

susceptibility:ERR= iImfGJ intsr i ,r i ,vd /Vigp.
We have performed the quadrature over a cubic subunit,

but the quadrature can be done over a parallelepiped(see the

Appendix). In that caseGJ intsr i ,r i ,vd would always be a di-
agonal tensor but the elements of the diagonal can be differ-
ent [see Eq.(A8) of the Appendix]. Such a lattice geometry
would, for instance, be useful to study the scattering of light
by an object with significantly different extensions in the
three directions of space.

III. RESULTS

To test the accuracy resulting from the integration of the
tensor we study the scattering of light by a homogeneous

sphere, as an analytic solution is known in the form of a Mie
series, but we emphasize that the method presented here does
not depend on the shape of the scatterer. We will compare
our results to the extinction, absorption, and scattering effi-
ciencies computed after using the Mie solution. The compu-
tation of the cross sections with the CDM is performed using
Eq. (3.01) of Ref. [3] for the extinction, and Eq.(3.06) of
Ref. [3] for the absorption, i.e.,

Cext =
4pk0

uE0u2 o
j=1

N

ImfE0sr j,vd ·p*sr j,vdg, s15d

Cabs=
4pk0

uE0u2 o
j=1

N

upsr j,vdu2FImS 1

a jsvd
D −

2

3
k0

3G . s16d

The scattering cross section is obtained as the difference be-
tween the extinction and absorption cross sections[3]. If we
use the polarizability defined by Eq.(14), Eq. (15) is always
used for obtaining the extinction cross section, but the ab-
sorption cross section is now computed as

Cabs=
4pk0

uE0u2 o
j=1

N

uElsr j,vdu2hImfa jsvdg

− ImfGintsr j,r j,vdgua jsvdu2j, s17d

where ImfGintsr j ,r j ,vdg represents the energy lost by a radi-
ating dipole. We will compare the present formulation(IT
for integrated tensor) of the polarizability to other known
prescriptions. We will consider the usual CDM with radia-
tion reaction(RR) correction [Eq. (9)], the lattice disper-
sion relation(LDR) [15], and the polarizability defined by
Lakhtakia (LAK ) [12]. Lakhtakia defines the polarizability
by integrating the field susceptibility over a spherical region
of the same volume as the cubic subunit[19]. In that case the
polarizability is analytical. To check the validity of the ap-
proximation done by Lakhtakia, we will compute the cross
sections with Eq.(14) for the definition of the polarizability,
i.e., by integrating only the diagonal elements of the tensor
(IDT).

The sphere is discretized intoN=2320 subunits. We
present in Figs. 1 and 2 the relative error in percent between
Mie and the different method used versusunuk0D, wheren is
the refractive index of the object:n=Î« (unuk0D large corre-
sponds to a large value ofD).

In Fig. 1 we have taken«=2.25+i. We first observe that
the integration of the diagonal term only(IDT) leads to a
result very close to that obtained with the polarizability of
Lakhtakia. Thus, the approximation made by Lakhtakia by
replacing the cube by a sphere is valid. Then, we notice that
the integration of the field susceptibility tensor for all terms
(IT) yields an overall slightly more accurate cross section.

In Fig. 2 we perform the same calculation but for a large
relative permittivity:«=10+10i. The IDT result is still close
to the one given by the Lakhtakia method. We see that the IT
method is better for all the cross sections from small values
of unuk0D until unuk0D<0.3. The fact that the IT method is
better for smallunuk0D is always true irrespective of the
value of the relative permittivity(in Fig. 1 due to the small
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value of the relative permittivity this is true only until
unuk0D=0.1). When the size of the subunit is very small
compared to the wavelength, the field susceptibility tensor

GJ sr j ,r j ,vd for r j in the vicinity of r i varies as 1/ur j −r iu3;
hence the approximation of a uniform field susceptibility ten-
sor over the subunit does not hold. Therefore, the integration

of GJ sr j ,r j ,vd allows us to go beyond this approximation.
For any given value ofunuk0D, different relative permittivi-
ties correspond to different sizes of the subunit, the size de-
creasing when the relative permittivity increases. This is the
reason why the difference between the IT and the other re-
sults is more visible in Fig. 2 where the relative permittivity
is larger.

To be more general, Fig. 3 presents the error on the ex-
tinction cross section for a givenunuk0D=0.02, versus the
real part of the relative permittivity for three different imagi-
nary part of the relative permittivity: Ims«d=2, 5, and 10. We
compare the IT result to the standard calculation accounting
only for the radiation reaction term(RR). Note that all the
other prescriptions of the polarizability are equivalent to RR
for this small value ofunuk0D. Figure 3 shows clearly that the
IT method leads to a better estimate of the cross section. This
is particularly true when the polarizability has a small imagi-
nary part (2) and a large real part(50). In that case the
relative error is about 200% for RR whereas the IT calcula-
tion gives a relative error below 15%. We can even see some
oscillations in the RR method due to morphological reso-
nances, which are usually hard to describe with the CDM
when the imaginary part of the permittivity is small. These
oscillations are not present in the IT calculation, which dem-
onstrates the robustness of our present prescription for the
polarizability. In fact, irrespective of Ims«d, the IT method
gives the same relative error for Res«d=50, less than 15%.
Notice that for the sake of computation time we use a small
numberN of subunits; however, increasingN would decrease
the relative error.

IV. CONCLUSION

In conclusion we have derived a prescription for the po-
larizability in which the interaction of each subunit with it-
self is treated by accounting for its finite volume, through the
integration of the full field susceptibility tensor over the sub-
unit. This integration is performed without any approxima-
tion. In doing this we validate the approximations used by
Lakhtakia in his derivation of a polarizability with finite-size
effects. Our derivation is, however, more general and can be
applied to a formulation of the coupled dipole method with a
noncubic orthogonal lattice. It should be possible to extend
our approach to a case where the subunits have arbitrary

FIG. 1. Scattering properties of a pseudosphere withN=2320
and «=n2=2.25+i. Relative error(in percent) for the extinction,
absorption, and scattering cross sections between different methods
and the exact Mie result. The relative error is plotted versus the
normalized lattice spacingunuk0D, wherek0 is the free-space wave
vector of the incident light. Dotted line, radiation reaction correc-
tion (RR); dash-dotted line, lattice dispersion relation(LDR);
dashed line, polarizability is defined by integrating only the diago-
nal element of the tensor(IDT); solid line, computation is done by
integrating all the elements of the field susceptibilities tensor(IT).
The curves with the symbol + pertain to calculations using the
polarizability defined by Lakhtakia.

FIG. 2. Same as Fig. 1 but for«=n2=10+10i.

FIG. 3. Relative error(in percent) for the extinction cross sec-
tion for unuk0D=0.02 versus Res«d for three different values of
Ims«d. Solid line, radiation reaction correction(RR); dashed line,
computation done by integrating all the elements of the field sus-
ceptibility tensor(IT).
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shapes; however, in such a case the polarizability tensor may
not be diagonal. We showed that integrating the full field
susceptibility tensor increases the accuracy of the CDM
when the size of the subunit is small compared to the wave-
length in the medium. These results are particularly dramatic
when the relative permittivity becomes large, a situation
where the conventional formulation of the CDM performs
very poorly. Finally, we emphasize that the approach pre-
sented here is not restricted to any particular geometry of the
scatterer.
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APPENDIX: COMPUTATION OF THE DIAGONAL TERM
OF THE FREE-SPACE FIELD SUSCEPTIBILITY

A Weyl expansion of the tensorGJ yields [21]

GJ sr i,r 8,vd =
i

2pFEk

dkxdky

w0
MJ

3 ehifkxsxi−x8d+kysyi−y8d+iw0uzi−z8ugjG − 4pdsr i − r 8d

sA1d
with

MJ = 1 k0
2 − kx

2 − kxky − gw0kx

kxky k0
2 − ky

2 − gw0ky

− gw0kx − gw0ky k2 2 , sA2d

whereg=sgnszi −z8d, w0=Îk0
2−k2, andk2=kx

2+ky
2. Using Eq.

(A1), the integrated tensor over a subunit is defined as

GJ intsr i,r i,vd = FE
Vi

d3r 8
i

2p
E

k

dkxdky

w0
MJ

3 ehifkxsxi−x8d+kysyi−y8d+iw0uzi−z8ugjG − 4p sA3d

=
i

2pFEk

dkxdky

w0
MJE

Vi

d3r 8

3ehifkxsxi−x8d+kysyi−y8d+iw0uzi−z8ugjG − 4p.

It is easy to perform the integration over the spatial coordi-
nates usingD as the spacing lattice of the subunit(Vi =D3).
Incidentally, one can note that the nondiagonal terms of the
integrated tensor vanish, and that the componentsxx, yy, and
zzare physically identical. Hence, withMzz=k2, we obtain

Gzz
intsr i,r i,vd =

4

pFEk
dkxdky

sinskxD/2dsinskyD/2d
kxky

3
k2

w0
2s− 1 +eiw0D/2dG − 4p. sA4d

The problem in computing this integral numerically is that

the integral converges very slowly, as the integrand varies as
1/k when kx,ky tend to infinity. To solve this problem of
convergence we use the following relation:

I = −
4

p
E

k
dkxdky

sinskxD/2dsinskyD/2d
kxky

= − 4p. sA5d

Now if we move to polar coordinatessdkxdky=kdkdud, we
have

Gzz
intsr i,r i,vd =

4

p
E

k=0

` E
u=0

2p kdkdu

w0
2 s− k0

2 + k2eiw0D/2d

3
sinsk cosuD/2dsinsk sinuD/2d

k2 cosusinu
. sA6d

This new integrand converges as 1/k3 whenk tends to infin-
ity; hence a fast convergence is obtained. However, whenk
=k0 we havew0=0 and the integrand is not defined. This
value corresponds to the transition from propagating to eva-
nescent modes(k.k0). We change the variable of integration
to w0 and usekdk=−w0dw0. Using parity considerations we
finally get

Gzz
intsr i,r i,vd =

16

p
SE

w0=k0

0

+E
w0=0

i` D
3 FE

u=0

p/2

du
sinsk cosuD/2dsinsk sinuD/2d

k2cosu sinu G
3

k0
2 − k2eiw0D/2

w0
dw0. sA7d

Equation(A7) is the sum of two integrals. The first one is the
integration over the propagating modesw0=0, . . . ,k0d and
the second one that over the evanescent modesw0

=0, . . . ,i`d. Therefore Eq.(A7) is defined irrespective of the
values ofw0, k, andu. With a little algebra, Eq.(A7) can be
written as Eq.(11) where for the sake of clarity we have
separated the two integrals.

If the subunit is not a cube but a parallelepipedsDx3Dy

3Dzd, a similar derivation yields

Gzz
intsr i,r i,vd

=
16

p
SE

w0=k0

0

+E
w0=0

i` D
3 FE

u=0

p/2

du
sinsk cosuDx/2dsinsk sin uDy/2d

k2 cosu sin u G
3

k0
2 − k2eiw0Dz/2

w0
dw0, sA8d

whereGxx
intsr i ,r i ,vd andGyy

intsr i ,r i ,vd are obtained by permu-
tation of the indicesx,y,z.
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