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Fully vectorial highly nonparaxial beam
close to the waist
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I use the angular spectrum representation to compute exactly the Gaussian beam close to the waist �w0� in the
case of a highly nonparaxial field �w0���. The computation is done in the vectorial case for a polarized Gauss-
ian beam. In the area of the waist, the contribution of the propagating and evanescent waves is discussed.
Moreover, the Gaussian wave is developed in terms of a series, which permits one to get analytical expressions
for both propagating and evanescent waves when the observation is close to the waist. © 2006 Optical Society
of America

OCIS codes: 350.5500, 260.1960, 260.2110.
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. INTRODUCTION
he beam propagation beyond the paraxial region has
een extensively studied.1–4 In the past decade, the vecto-
ial Gaussian beam has been studied in the regime of a
aist width �w0� smaller than the wavelength.5–9 Highly
onparaxial beams can be very useful in many areas in
hysics, for example, in performing optical trapping and
ptical manipulation,10,11 or in optical diffraction tomog-
aphy where a highly focused beam permits one to reduce
he investigation domain.12

In the case of a highly focused beam with a waist width
maller than the wavelength, the study is always done far
rom the waist with, for example a power-series expan-
ion for the transverse field6 or longitudinal field,5 hence
he evanescent waves are not taken into account. In this
aper I focus on the waist area, which implies that the
vanescent waves are not negligible and should be com-
uted correctly. Hence I use an angular spectrum
epresentation,13 which permits one to separate the con-
ribution of the evanescent and propagating waves with-
ut approximation. Then, by using a Taylor series, I ex-
ress the electric field in an analytic form when the
bservation point is close to the waist. The advantages of
his analytic formulation, not previously derived to my
nowledge, are its speed, and the ease with which one can
ompare the weight of the evanescent and propagating
aves.
The paper is organized as follows. In Subsection 2.A the

efinition and notation used in the problem are given.
ubsection 2.B develops the theory to compute separately
he evanescent and propagating waves without approxi-
ation as well as an analytical form when the observa-

ion is close to the waist. Section 3 is devoted to the re-
ults, and Section 4 presents the conclusions.

. THEORY
. Position of the Problem
o describe a polarized Gaussian beam, I use the well-
nown angular spectrum representation in the Cartesian
1084-7529/06/123197-6/$15.00 © 2
oordinate system.13 Omitting the dependence in i�t, the
lectric field can be expressed as

Ex�r� =�
−�

+��
−�

+�

Ax�kx,ky�exp�i�kxx + kyy + kzz��dkxdky,

�1�

Ey�r� =�
−�

+��
−�

+�

Ay�kx,ky�exp�i�kxx + kyy + kzz��dkxdky,

�2�

Ez�r� = −�
−�

+��
−�

+� �kx

kz
Ax�kx,ky� +

ky

kz
Ay�kx,ky��

�exp�i�kxx + kyy + kzz��dkxdky, �3�

n the z�0 half-space, where the z axis is taken to be the
irection of propagation. The wave vector has a magni-
ude k0

2= �� /c�2=kx
2+ky

2+kz
2 with

kz = ��k0
2 − kx

2 − ky
2� for propagating waves, �4�

kz = i��kx
2 + ky

2 − k0
2� for evanescent waves. �5�

o find the coefficients Ax and Ay, the initial guess taken
or the field at z=0 evolves from that of Agrawal and
attanayak6

Ex�x,y,0� = E0x exp	−
�2

2w0
2
 , �6�

Ey�x,y,0� = E0y exp	−
�2

2w0
2
 , �7�

ith �2=x2+y2, w0 is the waist of the Gaussian beam, and
0x and E0y are the magnitudes of the Gaussian beam at

he origin for the x and y components, respectively. Using
he inverse Fourier transform, it is easy to find
006 Optical Society of America
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Al�kx,ky� = E0l

w0
2

2�
exp	−

k2w0
2

2 
 , �8�

here l stands for either x or y, and k2=kx
2+ky

2. Since the
aussian beam is invariant under rotation about the z
xis, we will work with polar coordinates rather than Car-
esian coordinates. Replacing dkxdky with kdkd	 and per-
orming the angular integration introduces the zeroth
nd first-order Bessel function of the first kind, so as to
ield

El�r� = E0lIx�r�, �9�

Ix�r� =�
0

+�

w0
2f�k� exp�ikzz�J0�k��kdk, �10�

Ez�r� = − i�sin 	E0x + cos 	E0y�Iz�r�, �11�

Iz�r� =�
0

+� k2w0
2

kz
f�k�exp�ikzz�J1�k��dk, �12�

ith f�k�=exp�−�k2w0
2 /2��, sin 	=x /�, and cos 	=y /�. At

his step, generally, one studies the behavior of the propa-
ating waves by performing power-series expansion for
he transverse field6 or longitudinal field5 when z is large
ompared to the wavelength. Afterwards one usually5,6

ompares the different terms of the series to the usual
araxial or spherical approximation. In our case, we are
nterested in studying the field close to the waist and in
omparing, in this area, the contribution of the propagat-
ng and evanescent waves.

. Contribution of Evanescent and Propagating Waves:
tudy Close to the Waist
e want to know the contribution of evanescent and

ropagating waves, hence we should separate the integra-
ion performed over k as �0

+�=�0
k0+�k0

+�, where the first and
econd integrations correspond, respectively, to the propa-
ating and evanescent waves. To avoid the problem that
ccurs at k=k0 (which implies kz=0) for Iz, I perform the
ntegration over the normal component of the wave vec-
or. Hence, one can write

Ix�r� = 	�
0

k0

−�
0

+i� 
w0
2f�k�exp�ikzz�J0�k��kzdkz,

�13�

Iz�r� = 	�
0

k0

−�
0

+i� 
w0
2f�k�exp�ikzz�J1�k��kdkz. �14�

n a more detailed form Eqs. (13) and (14) become

Ix,pro�r� =�
0

k0

w0
2exp	−

w0
2�k0

2 − kz
2�

2 

�exp�ikzz�J0���k2 − k2�kzdkz, �15�
0 z
Ix,eva�r� =�
0

�

w0
2exp	−

w0
2�k0

2 + 
2�

2 

�exp�− 
z�J0���k0

2 + 
2�
d
, �16�

Iz,pro�r� =�
0

k0

w0
2exp	−

w0
2�k0

2 − kz
2�

2 

�exp�ikzz�J1���k0

2 − kz
2��k0

2 − kz
2dkz, �17�

Iz,eva�r� = − i�
0

�

w0
2exp	−

w0
2�k0

2 + 
2�

2 

�exp�− 
z�J1���k0

2 + 
2��k0
2 + 
2d
, �18�

here the indices “eva” and “pro” mean that the integra-
ion corresponds to the evanescent and propagating
aves, respectively. One can note from Eqs. (16) and (18)

hat the integration that represents the evanescent waves
s real for the x component and imaginary for the z com-
onent. Equations (15)–(18) can be evaluated numerically
nd hence we can obtain the field without any approxima-
ion at any position r. To my knowledge, this is the first
ime that the evanescent part of a Gaussian beam is pre-
ented. To the best of my knowledge, one can note only
ne recent work that separates the evanescent and propa-
ating parts in expanding the electric field to the modal
unction, but in the scalar case.14

The integrations represented by Eqs. (15)–(18) can be
nconvenient to perform, and in the case where the obser-
ation point is close to the z axis, we can use a more effi-
ient approach. We are interested in the electric field in
he waist area with a waist width smaller than the wave-
ength. Hence when � increases, the electric field vanishes
ery quickly. Then the Bessel functions, J0�k�� and J1�k��,
an be written in terms of series with the argument k�.15

oreover using the binomial theorem, Eqs. (13) and (14)
re rewritten as

Ix�r� = w0
2f�k0��

l=0

�

Cl �
m=0

l �− 1�m

k0
2mm ! �l − m�!	�0

k0

−�
0

+i� 

�exp	kz

2
w0

2

2 
exp�ikzz�kz
2m+1dkz, �19�

Iz�r� = w0
2f�k0�

�k0
2

2 �
l=0

�

Cl �
m=0

l+1 �− 1�m

k0
2mm ! �l + l − m�!

�	�
0

k0

−�
0

+i� 
exp	kz
2
w0

2

2 

�exp�ikzz�kz

2mdkz, �20�

ith Cl= ��−1�l�k0��2l� /4ll!. Now each integration can be
asily evaluated as Eqs. (19) and (20) can be computed us-
ng the following relations16
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Im,eva =�
0

+i�

exp	kz
2w0

2

2 
exp�ikzz�kz
mdkz

=
im+1m!

w0
m+1 Dm+1	 z

w0

 , �21�

or the evanescent part with

D1	 z

w0

 =��

2
w	 iz

�2w0

 , �22�

D2	 z

w0

 = 1 −

z

w0
D1	 z

w0

 , �23�

Dm+1	 z

w0

 =

1

m�Dm−1	 z

w0

 −

z

w0
Dm	 z

w0

� , �24�

here D is related to the parabolic cylinder function. For
he integration representing the propagating part, we get

Im,pro =�
0

k0

exp	kz
2w0

2

2 
exp�ikzz�kz
mdkz

= exp	w0
2k0

2

2 
exp�ik0z�
k0

m−1

w0
2 −

iz

w0
2Im−1,pro

−
m − 1

w0
2 Im−2,pro, �25�

ith

I1,pro =
1

w0
2�exp	w0

2k0
2

2 
exp�ik0z� − 1 − izI0,pro� , �26�

I0,pro =
i

w0
��

2�w	 iz

�2w0

 − exp	w0

2k0
2

2 

� exp�ik0z�w	 iz

w0�2
+

w0k0

�2

� . �27�

�·� is the Faddeev function and can be computed in a
ery efficient way.17 In conclusion, computing Eqs. (19)
nd (20) does not require a numerical effort as one needs
nly to compute the Faddeev function with two different
rguments and use relations of recurrence. As an example
e give below the first term of the series, i.e., l=0

Ix,eva�r� = f�k0��1 −
z

w0
��

2
w	 iz

�2w0

� , �28�

Ix,pro�r� = exp�izk0��1 −
z

w0
��

2
w	 iz

w0�2
+

w0k0

�2

�

− I �r�, �29�
x,eva
Iz,eva�r� =
i�

2w0
2 f�k0��z −��

2	w0
4k0

2 + z2 + w0
2

w0

w	 iz

�2w0

� ,

�30�

Iz,pro�r� =
�

2
exp�izk0��− k0 +

iz

w0
2

− i��

2	w0
4k0

2 + z2 + w0
2

w0
3 
w	 iz

w0�2
+

w0k0

�2

�

− Iz,eva�r�. �31�

otice that when z becomes large compared to the wave-
ength Eqs. (28)–(31) can be written in terms of a power-
eries expansion in 1/z:

Ix,eva�r� =
w0

2

z2 f�k0� + O	 1

z4
 , �32�

Ix,pro�r� = − i
w0

2k0

z
exp�izk0� + O	 1

z2
 , �33�

Iz,eva�r� = − �
ik0

2w0
2

2z
f�k0� + O	 1

z3
 , �34�

Iz,pro�r� = �
ik0

2w0
2

2z
f�k0� − �

w0
2k0

z2 exp�izk0� + O	 1

z3
 .

�35�

ence, one can note that for the z component, the first
on-null term is the 1/z term for both evanescent and
ropagating waves. Therefore, it seems that the evanes-
ent waves contribute to the far field as the propagating
erm. Incidentally, a few years ago, there were some
laims as to the contribution of evanescent waves to the
ower radiated to the far field by a dipolar source.18 The
/z term is a mathematical artifact associated with the
hoice of a particular plane with respect to which the an-
ular spectrum representation is derived. From a physi-
al point of view, no energy is carried to the far field by
he evanescent modes of the field and the only physically
ound quantity in the far field is the total field which is,
or all practical purposes, propagating.19–21 Then, one can
ee that the total field, i.e., Ix,eva+Ix,pro and Iz,eva+Iz,pro,
atches perfectly the first term of the power-series ex-

ansion of the transverse and longitudinal field presented
n Ref. 5 with the approximation that z is large compared
o the wavelength and � is close to zero.

. NUMERICAL RESULTS
n this section, I present some results computed in the
aist area for a waist smaller than the wavelength.
igure 1 presents the propagating and evanescent parts

or the x and z components of the electric field for a
aussian beam with a waist of w =� /2. The polarization
0
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f the Gaussian beam is such as E0y=0, E0x=1, and the
eld is presented in the plane �x ,z� at y=0. Note that in
igs. 1(a)–1(c) and 1(e)–1(g), we present the logarithm of
he components (detailed in the legend of the figure) in or-
er to appreciate more easily their variations.
No qualitative difference emerges from Figs. 1(a) and

(b), and Figs. 1(e) and 1(f) between the modulus of the
lectric field Ex and Ez and the modulus of the propagat-
ng part i.e., Ex,pro and Ez,pro, respectively. One can notice
hat the z component of the electric field vanishes on the z
xis. Figures 1(c) and 1(g) present the evanescent part for
he x component and z component, respectively, and when
�� they exhibit a dark horizontal line that denotes a
trong decrease of both components. To my knowledge,
his effect has not previously been commented upon.

hen we look carefully at the expressions of the evanes-
ent part, Eqs. (16) and (18), they contain the terms
xp�−
z�J0���k0

2+
2� and exp�−
z�J1���k0
2+
2� for the

and z components, respectively. When z increases,
xp�−
z� decays very quickly and only 
 close to zero
ives a significant contribution to the integral. Hence,
hen � is such as J0��k0�=0 the x component vanishes,
nd when � is such as J1��k0�=0 the z component van-
shes: this explains the dark line in Figs. 1(c) and 1(g).
igures 1(d) and 1(h) represent the ratio, in percentage,
etween the modulus of the evanescent part of the electric
eld and the modulus of the electric field, i.e.,
00 Ex,eva  / Ex for Fig. 1(d) and 100 Ez,eva  / Ez for Fig.
(h). As expected, Fig. 1(d) shows that for the transverse
omponent the contribution of the evanescent waves for
�� is less than 0.5%, thus it is perfectly negligible com-
ared to the propagating waves. In the case of the longi-
udinal component, Fig. 1(h), the relative difference is

ig. 1. (Color online) Gaussian beam with w0=� /2 in the �x ,z�
espectively. (a) and (e) are the logarithm of the modulus of the
odulus of the propagating part, (c) and (g) are the logarithms of

etween the modulus of the evanescent part and the modulus of
trong for a small value of z when the electric field is com-
uted close to the waist, and large for a value of z due to
mathematical artifact as explained previously in Sub-

ection 2.B.
We study the same Gaussian beam as in Fig. 1 but in

he plane �x ,y� close to the waist. i.e., at z=� /4. As previ-
usly observed, at first view there is little difference be-
ween the modulus of the electric field with its propagat-
ng components [Figs. 2(a) and 2(b)]. In Figs. 2(c) and 2(g)
he evanescent component shows circles due to, as previ-
usly stated, the Bessel function. For the z component
ote that it vanishes for y=0. Figures 2(d) and 2(h) show
hat the error made if the evanescent waves are not taken
nto account increases drastically for both components
hen the observation becomes far from the z axis, i.e., �
�=2w0.
Figure 3 compares the exact solution obtained from

qs. (15)–(18) (crosses) and the series described by Eqs.
19) and (20) versus x. The cutoff for the series is done at
=10 (solid curve) and l=30 (dashed curve). One can note
hat when x increases, it is necessary to compute the se-
ies for higher values of l, but for a small value of x, the
eries is a rapid way to obtain the components of the elec-
ric field.

Figure 4 studies the effect of the distance z, and of the
aist on both components. As expected, when the dis-

ance z increases, the evanescent waves decrease for both
aists. Note that the oscillations of the evanescent com-
onent are due to the Bessel function as explained previ-
usly, which means they do not depend on the waist
idth. The only effect of the waist on the evanescent
aves is to lower their magnitude, but the shape stays

he same. For the propagating waves, the effect of the

at y=0. The left- and right-side are on the x and z components,
onent of the electric field. (b) and (f) are the logarithms of the
dulus of the evanescent part, (d) and (h) are the ratios in percent
tal electric field.
plane
comp

the mo
the to
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aist is obvious and well known. Notice that the series
ssociated with the propagating waves converge more
uickly than those associated with the evanescent waves.
Table 1 presents some results on the convergence of the

eries expansion of Eqs. (19) and (20) versus w0, �, and z.
t shows that when the waist increases, the convergence
s easier. When � increases, the convergence is more diffi-
ult. This is because the Bessel function is developed in a
aylor series in a power of �. Regarding z, a larger value
ill give a quicker convergence when we are close to the
aist, but this is no longer the case for high values of

�z�100��, because in that case it does not make any

Fig. 2. (Color online) Gaussian beam with w0=� /

ig. 3. (Color online) Gaussian beam with w0=� /2 versus x /� at
=� /4. With crosses the exact solution using Eqs. (15)–(18). Solid
urve and dashed curve with the series development with l=10
nd l=30, respectively. (a) x component for the evanescent wave.
b) x component for the propagating wave. (c) z component for the
vanescent wave. (d) z component for the propagating wave.
Table 1. Value of l Needed to Compute Ix and Iz
a

�=� /4 �=� /2 �=�

z=� /4 z=� z=� /4 z=� z=� /4 z=�

0=� /4 3 (2) 3 (2) 7 (4) 5 (4) 21 (8) 11 (8)

0=� /2 3 (2) 3 (2) 5 (3) 5 (3) 10 (7) 9 (7)

0=� 3 (2) 3 (2) 5 (2) 5 (2) 9 (3) 9 (3)

aValue of l needed in Eqs. �19� and �20� to compute Ix and Iz �propagating and
vanescent waves� with a precision smaller than 1% compared to the exact solution
omputed through Eqs. �15�–�18�. Between brackets, the value of l is needed only for
he propagating waves to reach the precision wished.
2 in the �x ,y� plane at z=� /4. Same legend as in Fig. 1.
ig. 4. (Color online) Gaussian beam with w0=� /2 versus x /� at
=� /4 in the solid curve and z=5� in the dashed curve and with
0=� at z=� /4 in the dot-dashed curve and z=5� in the dotted

urve. Note that the symbols are the results of the series devel-
pment with l=30. (a) x is the component for the evanescent
ave. (b) x is the component for the propagating wave. (c) z is the

omponent for the evanescent wave. (d) z component for the
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ense to take our formulation, and a series expansion in
/z (Refs. 5 and 6) would be preferable.

. CONCLUSION
n this paper, I compute the longitudinal and transverse
omponents for a fully vectorial, highly nonparaxial beam
ithout approximation. I separate the contribution from

he evanescent and propagating waves and study the im-
ortance of the evanescent waves close to the waist. I note
ome oscillations of the evanescent waves versus � that
re independent of the waist and the distance z (for z
�) and give analytical expressions of the evanescent and

ropagating waves when the point of observation is close
o the waist.
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