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The coupled dipole method is a volume integral equation method which allows computation of the
scattered field from an arbitrary object �shape and relative permittivity�. This method has been
extended to the computation of optical forces. In this article we further extend the coupled dipole
method to the computation of optical torque. First, we establish the equation to obtain the optical
torque using the coupled dipole method, stressing the importance of the radiative reaction term.
Second, we compare our theory to existing models for validation. Third, we apply our method to the
computation of optical torque, from a plane wave circularly polarized on a micropropeller. The
influence of geometry and relative permittivity on the optical torque is studied. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2409490�

I. INTRODUCTION

Since the pioneering work by Ashkin and Gordon, it has
been known that optical fields produce a net force on neutral
particles.1–3 Optical force has been extensively used in a
wide range of applications: manipulation of particles through
optical tweezers �theoretical4–8 as well as experimental9�,
transport of neutral particles in a hollow waveguide10 or
Bose-Einstein condensates over large distances,11 creation of
microstructures by optical binding,12–15 assembly of objects
ranging from microspheres to biological cells,16,17 and mea-
sures of van der Waals forces between a dielectric wall and
an atom.18 For a complete review on optical trapping see
Refs. 19 and 20 and references therein.

The uses of these optical forces are not limited to trans-
porting and manipulating particles; they can also be used to
induce optical rotation, i.e., optical forces can create an op-
tical torque. One of the first experiments was carried out by
Higurashi et al. in 1994,21 and Gauthier developed one of the
first theoretical models in 1995.22,23 More recently it has
been shown that optical torque can be used for optically
driven micromachines.24–27 The computation methods in
Refs. 22, 23, and 25–27 used a ray optics model. Yet, in the
present article the size of the object under study is smaller
than or of the order of the wavelength of illumination. In this
case the ray optics model fails, and other methods must be
used. Many theories allow a computation of optical torque
on an arbitrary object. One can cite the T-matrix method,28

the finite-difference time-domain �FDTD�,29 multipole
t-matrix,30 and more, generally all numerical methods rigor-
ously based on electromagnetic theory.31 Following the pio-
neering work of Draine,32 we use the coupled dipole method
�CDM�, which is a volume-integral equation method. One
advantage of this method is that it applies to arbitrarily

shaped, inhomogeneous, anisotropic particles. Hence very
complex objects can be treated, such as a micropropeller, and
the influence of its shape and the nature of its constituents
can be studied in an efficient way. Also, the influence of the
nature of the illumination, which can have unexpected
effects,33 can be studied. Moreover, the CDM permits the
computation of the optical torque by taking into account both
the “orbital” and “spin” optical angular momentum in an
unified way. Furthermore, the computation is confined to the
volume of the scatterer. One drawback is that computation
time and memory requirements become difficult to manage
when the particles are larger than the wavelength of illumi-
nation. Consequently, the CDM perfectly applies to compu-
tation of the optical torque of micro- and nano-objects.

In Sec. II A we develop the theory necessary to compute
the optical torque from the CDM while stressing the impor-
tance of the radiative reaction term. In Sec. II B we give
some details concerning the manner in which the computa-
tions are performed in order to optimize the computation
time. In Sec. III A we validate the proposed method on an
object of particular shape, and in Sec. III B we investigate
the optical torque on a complex object which can be used as
a micropropeller. The influence of geometry and relative per-
mittivity on the optical torque is studied. Finally, we present
our conclusion in Sec. IV.

II. COMPUTATION OF THE OPTICAL TORQUE

A. Theory

Recently, we presented an optical force computation
method using the coupled dipole method �CDM�.34 Here, we
will simply recall the main steps to obtain the optical force;
then, we will concentrate on developing the computation of
optical torque. The CDM is used to derive the local fielda�Electronic mail: patrick.chaumet@fresnel.fr
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inside the object:35 the object is discretized into N dipolar
subunits and the local field at each subunit satisfies the fol-
lowing self-consistent equation:

E�ri� = E0�ri� + �
j=1,i�j

N

T�ri,r j���r j�E�r j� , �1�

where E0 is the incident field which illuminates the object, T
is the linear response to a dipole in free space36 �also called
field susceptibility, which is proportional to free-space Green
tensor�, p�ri�=��r j�E�r j� is the dipole moment of subunit j,
where ��r j� is the dynamic polarizability of subunit j and is
expressed as37

��r j� = ��r j�/�1 − �2/3�ik0
3��r j�� . �2�

Here, k0 is the modulus of the wave vector of the incident
wave, and ��r j� contains the Clausius-Mossotti relation,

��r j� =
3d3

4�

��r j� − 1

��r j� + 2
, �3�

where d is the lattice spacing of the discretization, and ��r j�
the relative permittivity of subunit j, which is constant
throughout the object if it is homogeneous. Note that if one
wants to study an object which is birefringent, this charac-
teristic is entered at this stage through ��r j�, which becomes
a tensor. The expression ��r j� relates to the fact that the field
applied to subunit j is the scattered field from all other sub-
units plus the radiative reaction term, Es�r j�, which is the
field from the subunit at its own location. This is written as
Es�r j�= i�2/3�k0

3p�r j�.
37 Hence the dipole moment of subunit

j reads as

p�r j� = ��r j��Es�r j� + E�r j�� = ��r j�E�r j� . �4�

With Eqs. �3� and �4� one can find the expression of
��r j� as in Eq. �2�. For more details about the radiative re-
action term see Refs. 38 and 39. To obtain the time-averaged
optical force on each subunit, the derivative of the local field
is required; therefore, we differentiate Eq. �1�,40

� �E�r�
�u

�
r=ri

= � �E0�r�
�u

�
r=ri

+ �
j=1,j�i

N � �

�u
T�r,r j��

r=ri

��r j�E�r j� , �5�

where u or v, stand for either x , y, or z. Once the local
electric field and its derivative are known, the component of
the total force on the ith subunit is given by41

Fu�ri� =
1

2
Re��

v=1

3

pv�ri�
��Ev�ri��*

�u 	 , �6�

where * denotes the complex conjugate. To compute the
force exerted by the light on any given object, one has to
sum the forces experienced by each dipole composing the
object.

We now want to compute the optical torque exerted on
an object around a rotation axis � �Fig. 1�. Hence the com-
ponent of the optical torque we are interested in is along the
� axis, due solely to the component of the perpendicular

force. Therefore, the superscript � in the equations means
that only the component perpendicular to the � axis is taken
into consideration. First, we compute the optical torque ex-
erted on subunit j for the set of the subunit. In the static case
it is easy to show that the optical torque exerted on a dipole
P, submitted to a electric static field E, and to an external
force F, is given by �=R��F�+P��E� , where R� rep-
resents the position of the dipole relative to the � axis �Fig.
1�. Our case is very similar; however, we should perform the
time average, so the optical torque writes as

��r j� = R j
� � F��r j� +

1

2
Re
p��r j�

� �E��r j� + Es
��r j��*� . �7�

For an easier computation one can write Eq. �7�, with Eq.
�4�, in the following form:

��r j� = R j
� � F��r j� +

1

2
Re
p��r j� � �p��r j�/��r j��*� .

�8�

The first term of Eq. �8� is the optical torque due to the
optical force �Eq. �6�� perpendicular to the � axis. As this
term depends on the rotation axis, it is usually called the
extrinsic part of the optical torque �or orbital angular mo-
mentum�. The second term represents the optical torque due
to the alignment of the dipole with the applied field at its
location. This term does not depend on the choice of the
rotation axis and it is usually called the intrinsic part of the
optical torque �or spin angular momentum�.42 For further
reading on optical angular momentum flow, refer to Ref. 43.

Remember that in the second part of Eq. �7�, the field
applied to subunit j is the sum of the fields scattered by all
other subunits, E��r j�, plus the field due to the subunit itself,
i.e., Es

��r j�. This term introduced in Eq. �4� respects the op-
tical theorem, hence conserving the momentum. In Eq. �7�
this term further allows the angular momentum to be con-

FIG. 1. Arbitrary object with a rotation axis of �. The square is an element
of the discretization of the object. R j

� is the distance between subunit j and
the rotation axis, and F��r j� is the component of the optical force perpen-
dicular to the axis � acting on subunit j.
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served. As an example, take a sphere that is small enough—
compared to the wavelength of illumination—to be assimi-
lated to a dipole. This sphere is illuminated by a circularly
polarized plane wave which propagates along the � axis con-
founded with the z axis: for example E0=E0�1, i ,0�eik0z,
which implies p =�E0�1, i ,0�eik0z. In this case the optical
force is restricted to the z axis; hence the optical torque
writes as

� =
1

2
Re�p� � �p�/��*� = E0

2 ���2

���2
Im��� �9�

E0
2 Im��� . �10�

The approximation leading from Eq. �9� to Eq. �10� is pos-
sible since we assumed that the sphere is small compared to
the wavelength of illumination. In the case of a lossless di-
electric sphere �for which the polarizability � is real� a well-
known result appears: the sphere cannot rotate under a cir-
cularly polarized plane wave.44,45 In the case of an absorbing
sphere the optical torque is proportional to the imaginary part
of its polarizability. This is coherent with the fact that the
optical torque of an absorbing sphere is proportional to its
absorbing cross section,46 which in turn is proportional to
Im��� in the case of a small particle.46,47 Note that the
sphere’s sense of rotation depends on the polarization of the
incident wave �left-handed or right-handed�.

There is some difference between our Eq. �8� and that
used in the pioneering work of Draine.32 First, his optical
torque was not computed around a rotation axis, and second
he omitted the radiative reaction term, Es

�, in Eq. �8� in com-
puting the optical torque. This omission was of little conse-
quence on the results presented by Draine, as the relative
permittivity of the object under study had a strong imaginary
part. In the case of a lossless sphere, however, its omission
would create an optical torque in contradiction with the re-
sult of Watermann44 �for example, Eq. �10� becomes �
=E0

2 Im����0�.
In conclusion, with the CDM the total optical force ex-

erted on an object and the total optical torque around an axis
� writes as

F = �
j=1

N

F�r j� , �11�

� = �
j=1

N

��r j� , �12�

where F�r j� and ��r j� are obtained from Eqs. �6� and �8�,
respectively.

B. Some details on the numerical computation

As stated in the Introduction, the computation time can
become difficult to manage when the particle size increases.
The linear system represented by Eq. �1� can be rewritten in
a more condensed form as

�I − A��E = E0, �13�

where I, A, and � are 3N�3N matrices. I is the identity
matrix, � a diagonal matrix which contains the polarizabil-
ities, and A a matrix which contains all the tensor T�ri ,r j�.
The field E is found by solving the linear system of Eq. �13�
iteratively using the quasiminimal residual method of Freund
and Nachtigal,48 to avoid the inversion of the matrix �I
−A��. Notice that the product A�E is performed with the
fast Fourier transform with A as a Toeplitz matrix. One can
also write the sum of Eq. �5� as a convolution product.
Hence, we can still use the fast Fourier transform to decrease
the time of computation of this sum.40

III. RESULTS

A. Particular case of a sphere and an ellipsoid

To validate the model, we first studied the cases of par-
ticular shape such as a sphere or an ellipsoid. In Fig. 2 we
present the optical torque normalized to 4��0�E0�2: �N

=� / �4��0�E0�2� �notice that in this article we will present
always the normalized optical torque which is in m−3� for a
sphere illuminated by a plane wave, more particularly a
right-handed circularly polarized wave, which propagates
along the z axis: E0=E0�1, i , 0�eik0z.49 The radius of the
sphere is a=� /4 and the relative permittivity is such that �
=2.25. We remark that when experimenting with optical
torque, the object under study is often embedded in a liquid
medium. In this case � is the ratio between the relative per-
mittivity of the object and the relative permittivity of the
liquid. Figure 2 shows the optical torque versus d /� when
we use Eq. �7� �solid line� and when the radiative reaction
term is omitted in Eq. �7� �dashed line�. When we use Eq. �7�
the optical torque vanishes, but due to numerical errors it is
not exactly zero and we have some oscillations. The dashed
line shows that when the radiative reaction term is not used
in Eq. �7�, first the optical torque is nonzero, and second, the

FIG. 2. Study of the normalized optical torque vs d /� on a dielectric sphere
��=2.25� with radius a=� /4 illuminated by a circularly polarized plane
wave. Solid line the optical torque is computed in using Eq. �7�, and dashed
line without taking into account the radiative reaction term in Eq. �7�.
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optical torque depends on the discretization. This shows the
importance of taking the radiative reaction term into account,
in this case.

In Fig. 3 we present the optical torque with the same
condition of illumination as those used in Fig. 2. The radius
of the sphere is a=� /4 and the relative permittivity is such
that Re���=2.25. Figure 3�a� shows the optical torque plotted
versus the imaginary part of the relative permittivity. The
curves with dashed and dotted lines are computed with the
CDM for different values of N. The curve with a plain line is
obtained from Eqs. �7�, �8�, and �36� taken from Ref. 46,
which shows that the optical torque for a sphere illuminated
by a circularly polarized plane wave can be expressed as

� =
E0

2

4�k0
Cabs, �14�

where Cabs is the absorbing cross section which can be ob-
tained from the Mie series �for a small sphere compared to
the wavelength Cabs=4�k0 Im����. One can notice that the
curve obtained with N=65 752 is superposed with the optical
torque obtained from Eq. �14�. Figure 3�b� shows the relative
error in percent between the results obtained from Eq. �14�
and the CDM. With N=65 752 the relative error remains
below the 2% level. To improve the convergence a recent
improvement to the CDM should be applied.40,50 We have
checked that, if the radiative reaction term is not taken into
account in Eq. �7�, the curve obtained in that case is no
different than those obtained with the rigorous computation.
This is due to the absorbing part of the relative permittivity
as stated in Sec. II A.

Next, we illuminated an ellipsoid ��=2.25� defined by
��x /2�2+y2+z2��� /4�N=28 256�, hence twice as wide in
the x direction as along the y and z axis. The illumination is
a plane wave where the electric field forms an angle of 	
with the x axis: E0=E0�cos�	� , sin�	� , 0�eik0z �see the inset
of Fig. 4�. Figure 4 shows the optical torque versus 	. The
optical torque vanishes 4 times, showing that elongated par-
ticles tend to align along their long and short axes, but the

equilibrium is stable only along the long axes. This effect has
been observed experimentally on nanorods.51 This can be
explained by the small size of the particle compared to the
wavelength: from Eq. �8� the optical torque is expressed as
�E0

2 sin�2	���xx−�yy� /4, where the polarizability of an
ellipsoid can be deduced from Ref. 52. Hence, the optical
torque vanishes when sin�2	�=0. Notice that particles which
have different polarizabilities along their short and long axes
act as if they were birefringent28 as the optical torque also
depends on sin�2	�=0 for a birefringent object under a lin-
early polarized wave.53

B. Micropropeller

Recent technological progress has made it possible to
design complex objects of micrometer size, and to build mi-
cromotors set into motion by light; see for example Ref. 24.
The rotation of this micropropeller is often explained by
analogy with the wind on the vanes of a windmill.24 Hence,
it would be interesting to study the effect of the shape and
the relative permittivity on such micropropellers. For this,
we chose a simplified micropropeller �see Fig. 5�, although it
is possible to study more complex objects with the CDM.
The angle between the vanes and the x axis is �, and the
rotation axis � is the z axis. For the sake of simplicity, the

FIG. 3. Study of the normalized optical torque on a sphere with radius a
=� /4 illuminated by a circularly polarized plane wave. �a� Optical torque vs
Im��� �Re���=2.25� obtained from the Mie series �plain line�, and the
CDM: N=8217 �dashed line�, and N=65752 �dotted line�. �b� Relative error
in percent for optical torque obtained from the Mie series and from the
CDM.

FIG. 4. Normalized optical torque vs 
 the angle between the x axis and E0.
The object is an ellipsoid wider in the direction of x, see inset.

FIG. 5. The object under study is a micropropeller illuminated by a right-
handed circularly polarized wave which propagates along the z axis: E0

=E0�1, i , 0�eik0z. The angle between the two vanes and the x axis is �.
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rotation axis of the micropropeller �cylinder along the z axis
in Fig. 5� is not taken into account in the computation of the
optical torque.

Note that in our study we investigated a micropropeller
of the same size as the wavelength of illumination.

If the illumination is linearly polarized, the micropropel-
ler tends to align its long and short axes in the electric field
�using the same explanation as previously seen for the ellip-
soid�, and there is no micropropeller rotation. This problem
is circumvented by illuminating the object with a right-
handed circularly polarized wave which propagates along the
z axis: E0=E0�1, i , 0�eik0z �E0=1 for Figs. 6 and 7; see
Fig. 5�.

1. Influence of the geometry

First, we studied the effect of micropropeller geometry
on the optical torque. Figure 6 represents the effect of vane
length �ly� and angle � of the vane with lx=0.8� and lz

=0.4�, and �=2.25 �as micropropellers are always studied in
a liquid environment � corresponds to the contrast in relative
permittivity of the object and the liquid�.

In fact, when �=0° �plain line� and �=90° �dot-dashed
line� we have a parallelepiped; thus, the optical torque is due
only to the transfer of angular momentum from the incident
wave to the micropropeller. If the parallelepiped were small

enough compared to the wavelength, the optical torque could
be written, from Eq. �8�, as �= �1/3�E0

2k0
3��xx−�yy�2. Hence,

the greater the difference between the dimensions lx and ly,
the stronger the optical torque. In our opinion, this explains
why optical torque is stronger when �=90° than when �
=0°. When ly increases the optical torque presents some os-
cillations. In our opinion these oscillations are produced by
geometrical resonance and are particularly strong when �
=0°, where the optical torque can be either positive or nega-
tive.

The maximum optical torque is obtained for �=60° plot-
ted as a dashed line. When ly increases, the optical torque
increases more or less linearly. If �=−60° the optical torque
becomes negative, but the absolute value is smaller than
when �=60°. This is due to the incident plane wave which is
polarized to the right. Thus, we can divide the optical torque
into two parts: one due to the circular polarization of the
incident wave �which gives, e.g., the optical torque on an
ellipsoid� and the other due to the geometry of the micropro-
peller �angle of the vane�. In order to optimize the optical
torque �as far as possible� these two parts should contribute
to give an optical torque with the same sign, which is the
case for �=60°.

Notice that the best � value yielding the strongest optical
torque depends on the geometry of the micropropeller, i.e., lx

and lz. For example with the previous lx, �lx=0.8��, but with
lz=0.2� or lz=0.8�, the largest optical torque is obtained for
�=50° and �=25°, respectively. When lx is larger, i.e., lz

=0.4� and lx=1.2�, the optical torque is larger for �=65°.

2. Influence of the relative permittivity

Figure 7 shows the influence of the relative permittivity
on the optical torque with the following geometry: lx=0.8�,
ly =3.0�, lz=0.4�, and �=60°.

From Fig. 7 it is obvious that the relative permittivity
influences optical torque. However, the exact behavior is far
from being trivial. For instance Fig. 7 shows that optical
torque increases or decreases versus Im��� according to the
value of Re���. With a different micropropeller geometry
�change of lx, ly, and lz� the behavior can be different. The
only general behavior that we have observed is that an in-
crease in Re��� always produces an increase in optical
torque, regardless of the value of Im��� or the geometry of
the micropropeller. In conclusion, it is difficult to predict
which relative permittivity will optimize the optical torque.

Notice that if we take an irradiance of
20 mW/�m2 �4��0�E0�2=1675 kg m−1 s−2�, �=1.3, which is
typically used in experimentation,24 Fig. 7 yields an optical
torque of about �=6.0�10−19 N m. Our optical torque is
about 100 times weaker that those in Ref. 24; however, our
micropropeller is smaller and has only two arms.

IV. CONCLUSION

In conclusion, we have presented a method to compute
optical torque using the coupled dipole method. We have
shown that the radiative reaction term must be taken into
account to express the optical torque on a dipolar subunit.
We further validated our method with specific cases, and

FIG. 6. The object under study is a micropropeller �Fig. 5� illuminated by a
circularly polarized plane wave. The normalized optical torque is plotted vs
ly with lx=0.8�, lz=0.4� for different angles �: �=0° in plain line, �
=60° in dashed line, �=90° in dot-dashed line, and �=−60° in dotted line.

FIG. 7. The object under study is a micropropeller �Fig. 5� illuminated by a
circularly polarized plane wave. The normalized optical torque is plotted vs
Re��� and Im��� with lx=0.8�, ly =3.0�, lz=0.4�, and �=60°.
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showed that the CDM can be used to compute the optical
torque on a complex object, which in this article is a micro-
propeller. We show that in this case it is difficult to predict
the influence of the various parameters �angle of the vane,
relative permittivity� on the optical torque. Therefore, an ex-
periment should begin with a theoretical study aimed at op-
timizing the micropropeller, for which the CDM is a per-
fectly adapted tool when the object is smaller or comparable
to the wavelength of illumination. Notice that angular speed
depends on the optical torque exerted by the light on the
micropropeller, but also on the viscous drag force, which is
difficult to evaluate in the case of complex shapes.

The theory presented in this article can easily be ex-
tended to an object upon a flat substrate.34 Note that the
optical torque experiment uses more complex beams such as
Laguerre-Gauss modes,54 optical vortices55 which can easily
be included in the CDM through the incident field E0 in
Eq. �1�.
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