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We have developed a rigorous numerical method that permits the simulation of the electromagnetic field
scattered by an aperiodic object in presence of a double-periodic structure �grating�. Our volume integral
formulation, which is an extension of the classic coupled dipole method, is versatile and can address inhomo-
geneous objects and gratings of any shape. The electromagnetic field is calculated both in the near-field and
far-field region. In this latter case we propose an efficient technique based on the reciprocity theorem.
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I. INTRODUCTION

Development of numerical tools that simulate the electro-
magnetic field inside complex structures is crucial for the
understanding of physical phenomena and the design of new
components. The study of the interaction between the elec-
tromagnetic field and an object placed in the vicinity of a
planar periodic structure has many applications. For ex-
ample, it permits one to evaluate the field enhancement in-
side microcavities in photonic crystal slabs, to calculate the
scattering by grating defects, or to simulate the radiation pat-
tern of sources in a structured planar waveguide.1

Several numerical techniques have been proposed to solve
the Maxwell equations without any approximation except
that necessary for the numerical implementation. Among
these are the finite difference time domain method �FDTD�,
the finite element method �FEM�, the multiple multipole
method �MMP�, the volume integral equation �such as the
coupled dipole method �CDM� or method of moment
�MoM��, the surface integral equation.2 However, despite the
progress of the computing capabilities, these techniques are
usually adapted to specific configurations to limit the calcu-
lation cost. Hence the evaluation of the field scattered by a
bounded three-dimensional object immersed in an homoge-
neous space will not be addressed in the same way as that of
the field scattered by an infinite periodic structure �or
grating�.3

In our configuration, the structure is an aperiodic object
�defect� in the presence of a double-periodic structure �grat-
ing�, hence it is neither periodic nor bounded and few simu-
lation tools are adapted to this problem. If one assumes that
the defect is duplicated periodically �with a period much
larger than that of the grating�, codes adapted to periodic
structures, such as the differential or coupled-wave
methods,4 can be used. This supercell technique gives an
accurate result if the defect period is large enough so that the
coupling between adjacent objects can be neglected. In gen-
eral this leads to a large number of unknowns in the Fourier
field representation and a very high computation cost. FDTD
techniques with periodic boundary conditions can also be
proposed.5 In this case, the discretized domain must be large
enough so that the influence of the defect at the edges is
negligible.6,7

In this paper we propose an efficient method that simu-
lates the field scattered by a defect in a two-dimensional
periodic structure without invoking the supercell technique.
Our approach is an extension of the coupled dipole method
or equivalently the method of moment.8 One first calculates
the field susceptibility tensor of the grating which gives the
field scattered by a dipole in the presence of the double-
periodic structure. In this work, the tensor is obtained
through a volume integral formulation which can address
inhomogeneous gratings of any shapes. Then, the aperiodic
object is considered as a collection of dipoles whose exciting
field is obtained by solving a self-consistent linear system
involving the field susceptibility tensor of the grating. Last,
when the local field inside the aperiodic object is known, the
scattered field is evaluated in the near-field and far-field re-
gions. Since the CDM is a volume integral equation method,
it can address any arbitrary shaped, inhomogeneous, aniso-
tropic defect and periodic structure. Another important ad-
vantage of this technique is that its numerical cost lies essen-
tially in the calculation of the field susceptibility tensor.
Once the latter is evaluated and memorized, one can easily
study the scattering by various objects �for example, differ-
ent kinds of microcavities�. The additional numerical effort
will be the same as that obtained if the objects were in a
homogeneous medium.

Our paper is organized as follows: In Sec. II A the prin-
ciples of the coupled dipole method are developed. The cal-
culation of the field susceptibility tensor of the double-
periodic structure is given in Sec. II B, and the field scattered
in far field is investigated in Sec. II C. In Sec. II D we show
how this method can be used to calculate the scattering by a
lacuna of the grating. Section III is devoted to some numeri-
cal results and comparisons with other techniques, and we
draw our conclusion in Sec. IV.

II. COMPUTATION OF THE DIFFRACTED FIELD BY A
DEFECT IN A PERIODIC STRUCTURE

A. Formalism of the problem

In its original form, the coupled dipole method �CDM�
was developed to study the free-space scattering of light by
an object with finite dimensions.9,10 The method was subse-
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quently extended to deal with objects near a substrate11,12 or
inside a multilayer system.13 Recently the CDM has been
extended to planar periodic structures or gratings.3 Now we
consider the scattering by an aperiodic object deposited on a
grating �Fig. 1�. More precisely, in our configuration, a pla-
nar homogeneous substrate occupies the region z�0 and the
grating and object occupy the region z�0. The grating is
made of a motif �or base cell� that is duplicated periodically
on the substrate. The whole structure is illuminated by a
plane wave which comes either from the substrate or the
superstrate. In the coupled dipole method, the objects are
represented by a cubic array of polarizable subunits, each
with a size small enough compared to the spatial variations
of the electromagnetic field for the dipole approximation to
apply. Hence, in our configuration, the local electric field at
the ith subunit at location ri is given by the self-consistent
equation,

E�ri� = E0�ri� + �
j=1

N

�
m,n=−�

�

�H�ri, r̄ j + mu + nv�

+ F�ri, r̄ j + mu + nv���p�r̄ j�E�r̄ j + mu + nv�

+ �
k=1

K

�H�ri,rk� + F�ri,rk���d�rk�E�rk� , �1�

where �m,n=−�
� means that we perform a double sum, i.e.,

�m=−�
� �n=−�

� . The index i runs over all the subunits of the
structure �grating and defect�. F is the free-space field
susceptibility14 and H represents the field susceptibility as-
sociated with the surface.13 The aperiodic object �or defect�
is discretized into K subunits located at rk with k=1,… ,K
and polarizability �d�rk�. The elementary motif of the grating
�restricted to one period� is discretized into N subunits placed
at r̄ j with j=1,… ,N and polarizability �p�r̄ j�. The whole
grating is described by an infinite set of dipoles, placed at
r̄ j +mu+nv with �m ,n��Z2. �u ,v� is the period of the grat-
ing with u=uxi+uyj and v=vxi+vyj. The expression of the
polarizability of each subunit is given by

�d,p�ri� = �d,p
0 �ri�/�1 − �2/3�ik0

3�d,p
0 �ri�� , �2�

where the lower index d, p denotes the polarizability associ-
ated with the defect or the period respectively. k0 is the
modulus of the wave vector of the electromagnetic field in
vacuum, and �d,p

0 �ri� satisfies the Clausius-Mossotti relation :

�d,p
0 �ri� =

3dd,p
3

4�

�d,p�ri� − 1

�d,p�ri� + 2
. �3�

In Eq. �3� dd,p is the spacing of the object discretization
�defect or grating� and �d,p�ri� stands for its relative permit-
tivity. The term �2/3�ik0

3�d,p
0 �ri� in Eq. �2� is related to the

radiative reaction term and is essential to satisfy the optical
theorem.15,16 Note that the the contact term F�ri ,ri� in Eq.
�1� is equal to zero inasmuch as we are dealing with the local
electric field.8 In Eq. �1�, due to the grating, the number of
subunits is infinite, and therefore so is the size of the linear
system to be solved. One solution would be to truncate the
infinite sum, and solve the system for a large but finite num-
ber of objects, but this is impractical because the sums over
the lattice converge very slowly.

This problem can be circumvented by taking the substrate
and the grating as the reference system of the problem. To
this aim, one introduces the field susceptibility tensor of the
double periodic structure G, such that G�r ,r��p�r�� is the
electric field at r radiated by a dipole p�r�� placed at r� in
presence of the grating. With this tool, one can calculate the
local field inside the aperiodic object through a self-
consistent integral equation. Namely, the local field is the
sum of the field that would exist in absence of the defect
Eper�r� �this field can be obtained with any classic grating
method; in Appendix A and B we provide a means to calcu-
late it with the CDM formalism�, plus the field radiated in
the presence of the grating by the K dipoles forming the
aperiodic object. The self-consistent equation giving the lo-
cal field inside the aperiodic object reads

E�ri� = Eper�ri� + �
k=1

K

G�ri,rk��d�rk�E�rk� . �4�

Equation �4� is a linear system to solve whose size is
3K�3K. Once the local field E�ri� is known at each ri, for
i=1,… ,K the electric field can be computed everywhere
outside the aperiodic object through the equation

E�r� = Eper�r� + �
k=1

K

G�r,rk��d�rk�E�rk� . �5�

From Eqs. �4� and �5�, it appears that the main difficulty of
the CDM is to calculate the field susceptibility tensor of the
periodic structure.

B. Field susceptibility tensor of a double-periodic structure

Very few techniques have been proposed to calculate the
field susceptibility tensor of a periodic structure. In Ref. 1
one calculates the field scattered by a dipole placed in a
grating with an S-matrix approach and the use of the Fourier
modal method. This method is efficient when the field inside

FIG. 1. Geometry of the system: double-periodic structure with
basis vector u and v. The base cell of the periodic structure is
discretized in N subunits. In this periodic structure a defect is intro-
duced, and is discretized in K subunits. The double-periodic struc-
ture and the defect are above a flat substrate.
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the periodic structure can be represented adequately by a
small number of Fourier coefficients, i.e., when the period of
the grating is small. In this paper, we use a volume integral
approach which is efficient when the grating motif can be
described by a small number of dipoles, regardless of the
period. The field susceptibility tensor G�r ,r�� which gives
the field in r radiated by a dipole placed in r� in presence of
the grating is written as the sum of the field radiated by the
dipole in presence of the substrate alone with the field radi-
ated by the infinite number of subunits periodically placed on
the substrate and constituting the grating:

G�r,r�� = S�r,r�� + �
j=1

N

�
m,n=−�

�

S�r, r̄ j + mu + nv�

� �p�r̄ j�G�r̄ j + mu + nv,r�� , �6�

with S�r ,r��=F�r ,r��+H�r ,r�� and �u ,v� are the basis vec-
tors of the grating. It is worth noting here that one could
replace the field susceptibility tensor of the surface by the
field susceptibility tensor of a multilayer. It amounts to
changing the Fresnel reflection and transmission coefficients
present in the expression of H by that of the multilayer. In
the same way, we can remove the substrate with H=0.

To compute G�r ,r�� we define a new tensor as

Gper�r,r�,k�� ª �
p,q=−�

�

G�r + pu + qv,r��

�exp�ik� . �pu + qv�� , �7�

where the tensor Gper is pseudoperiodic with Gper�r+mu
+nv ,r� ,k��=Gper�r ,r� ,k��exp�−ik� . �mu+nv��. Similarly,
we introduce a pseudoperiodic tensor associated with the sur-
face:

Sper�r,r�,k�� ª �
p,q=−�

�

S�r + pu + qv,r��

�exp�ik� . �pu + qv�� . �8�

Notice that this new tensor Sper, as detailed in Refs. 3,17, can
be computed very efficiently. Due to the translational invari-
ance of the substrate Sper has some properties, notably
we have Sper�r+ pu+qv ,r� ,k��=Sper�r ,−pu−qv+r� ,k��
=Sper�r ,r� ,k��exp�−ik� . �pu+qv��.

Introducing Eq. �6� in Eq. �7� and using the definition of
Eq. �8� and the property of Sper, Eq. �7� can be written as

Gper�r,r�,k�� = Sper�r,r�,k�� + �
j=1

N

Sper�r, r̄ j,k��

� �p�r̄ j�Gper�r̄ j,r�,k�� . �9�

To obtain Gper�r ,r� ,k�� from Eq. �9�, one needs to compute
Gper�r̄ j ,r� ,k�� which is the solution of the following self-
consistent equation:

Gper�r̄k,r�,k�� = Sper�r̄k,r�,k�� + �
j=1

N

Sper�r̄k, r̄ j,k��

� �p�r̄ j�Gper�r̄ j,r�,k�� . �10�

Equation �10� is a linear system of equation of size 3N
�3N where Gper�r̄k ,r� ,k�� are the unknowns. Once this sys-
tem is solved, Gper�r ,r� ,k�� can be obtained for any position
r and r�.

Now, the pseudoperiodic Gper�r ,r� ,k�� �Eq. �7�� can be
cast into a Fourier series whose elements are given by the
following integral:

G�r,r� + mu + nv� =
1

S
� �

S

Gper�r,r�,k��

�exp�− ik� . �mu + nv��dk� �11�

where ��S means that the integration is performed over the
first Brillouin zone of the grating, defined by the two follow-
ing vectors:

U = 2��vyi − vxj�/�uxvy − vxuy� , �12�

V = 2��− uyi + uxj�/�uxvy − vxuy� , �13�

and S= 	U�V	. Hence taking �m ,n�= �0,0� Eq. �11� leads to
the following expression for the field tensor susceptibility of
the double periodic structure:

G�r,r�� =
1

S
� �

S

Gper�r,r�,k��dk� . �14�

The tensor G is then obtained through Eq. �14� which is
discretized for numerical purposes as

G�r,r�� 

1

MM�
�
l=0

M−1

�
l�=0

M�−1

Gper�r,r�,
l

M
U +

l�

M�
V� ,

�15�

with �M ,M�� a natural positive number. Note that this dis-
cretization has a physical meaning. Indeed, the field suscep-
tibility tensor obtained with Eq. �15� is doubly periodical
with periods equal to Mu and M�v. In the other term, it gives
the field in r radiated by an infinite set of dipoles placed at
r�+ lMu+ l�M�v where �l , l���Z2. The larger �M ,M�� the
better the approximation for the tensor. Hence we are faced
with the same problem of convergence as that encountered in
a supercell method.6 At this point, it is worth stressing that
the field radiated by a dipole in the presence of a grating is
the sum of the field radiated by the dipole in the presence of
the bare substrate �given by S � plus the field radiated by
each subunits forming the grating. To minimize the influence
of the field radiated by the discretization-induced dipoles we
calculate the field susceptibility tensor by injecting Eq. �9� in
Eq. �14�, while using Eq. �8�. We obtain

G�r,r�� = S�r,r�� +
1

S
� �

S
�
j=1

N

�Sper�r, r̄ j,k��

� �p�r̄ j�Gper�r̄ j,r�,k���dk� , �16�
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S�r,r�� +
1

MM�
�
l=0

M−1

�
l�=0

M�−1

�
j=1

N 
Sper�r, r̄ j,
l

M
U +

l�

M�
V�

� �p�r̄ j�Gper�r̄ j,r�,
l

M
U +

l�

M�
V�� , �17�

where Gper�r̄ j ,r� ,k�� is obtained from Eq. �10�. With this
formulation, the calculation of S is independent of the dis-
cretization due to the numerical procedure. Hence, at the
observation point, the field radiated by the dipole via the bare
substrate is accurately accounted for. The unwanted contri-
bution of the discretization-induced dipoles located at r�
+ lMu+ l�M�v is solely felt through multiple scattering with
the subunits of the grating. It is worth noting that the field
radiated in r by the discretization-induced dipoles will be
significantly smaller than that radiated by the “real” dipole
placed at r� if 	r−r�		min�	r−r�−Mu	 , 	r−r�−M�v	�.

C. Evaluation of the field in the far-field zone

The method presented in Sec. II B to calculate the field
susceptibility tensor is not efficient if the position of obser-
vation r is located in the far-field zone. Indeed, to minimize
the contribution of the discretization-induced dipoles, Eq.
�17�, one should have 	r		min�	Mu	 , 	M�v	�, which is im-
possible when 	r	 is very large compared to the wavelength.
In this case, it is much simpler and efficient to use the reci-
procity theorem to calculate the tensor. The latter states that,
whatever the configuration under study �and, in particular, in
presence of the grating� the field E��rk� created by a dipole
p� placed at r is related to the field E�r� created by a dipole
p placed at rk through the relation18

p�rk� · E��rk� = p��r� · Ek�r� . �18�

Now, the field scattered by the dipole p� placed at r in far
field and impinging on the defect embedded in the grating
can be written as

E0�rk� = p�� �r�
eik0	r−rk	

	r − rk	

 p�� �r�

eik0	r	

	r	
e−ik0.rk, �19�

where p�� �r� means that we take only the component of the
dipole moment perpendicular to the vector r and k0=k0r /r.
Hence E0 can be assimilated to an incident plane wave with
magnitude eik0	r	 / 	r	. To compute the field E��rk� we use Eqs.
�5� and �A1� where the incident field E0 is replaced by the
expression given by Eq. �19�. Once E��rk� is evaluated for
the two fundamental polarizations it is easy to compute Ek�r�
from Eq. �18�. Finally, to obtain the field diffracted by the
object in the presence of the grating in far field, we add the
field contribution of each dipole forming the object as

E�r� = Eper�r� + �
k=1

K

Ek�r� . �20�

D. Particular case where the defect is a lacuna in the
double-periodic structure

The method that we have presented can be used to create
a lacuna in the double-periodic structure. In this case, the

aperiodic object must have exactly the same discretization as
that of the grating motif and the same polarizability with
opposite sign: �d�r̄ j��=−�p�r̄ j +mu+m�v� for j=1,… ,N �it is
obvious from Eq. �1� that the resulting structure will be a
grating with a missing motif�. For example, the field scat-
tered by a grating whose central motif has been suppressed,
i.e., �m ,n�= �0,0� which implies r̄ j�= r̄ j, is given by

E�r� = Eper�r� + �
k=1

N

G�r, r̄k��d�r̄k�E�r̄k� , �21�

E�r̄k� = Eper�r̄k� + �
l=1

N

G�r̄k, r̄l��d�r̄l�E�r̄l� , �22�

where Eper�r̄k� is obtained with Eq. �A1� and the field sus-
ceptibility tensor of the grating G is given by Eq. �17�. In Eq.
�21� the sum over k represents the field scattered by the
defect with the negative polarizability, i.e., the difference be-
tween the field scattered by the periodic structure minus the
field scattered by the structure with the lacuna. Obviously,
with the same technique, it is also possible to displace or to
change the nature of one base cell of the grating.

III. NUMERICAL RESULTS

In this section, we present some numerical results and we
check the convergence of our method. We consider a double-
periodic structure made of silicon cubes of width a deposited
along a square lattice of period u= �p ,0� and v= �0, p� on a
glass substrate. The aperiodic object is a cube of silver with
the same width a, placed at the center of the square cell �see
Figs. 2�a� and 2�b��. The substrate is illuminated from the
substrate, with a TM polarized plane wave with angle of
incidence 
 �see Figs. 2�b��, and the magnitude of the inci-
dent field is set to 1. The angle of incidence can be chosen so
as to illuminate the grating in total internal reflection. In the
first example, we have taken a=50 nm, p=200 nm, and �
=600 nm. The relative permittivity of the material are taken
from Palik’s handbook.19 Figures 2�c� and 2�d� show the
modulus of the electromagnetic field calculated at an altitude
h=100 nm for an angle of incidence 
=0� and 
=50�, re-
spectively. These figures show clearly the coupling between
the silver defect and the neighboring silicon cubes and the
limits of its influence. Within a few periods away from the
defect, the field is not affected by its presence. In this ex-
ample, the calculation has been done for M =M�=11, and
one can wonder if the convergence is obtained. In the next
example we study the influence of the number of modes
�M ,M�� on the accuracy of the results. In Figs. 3�a� and 3�b�,
we plot the near field along the dotted line shown in Figs.
2�a� and 2�b� �z=h=100 nm, y= p /2=100 nm� for different
values of M and M�. Note that this line overhangs the defect.
It is the place where the field is the most affected by the
presence of the object. It is observed that, when the observa-
tion point is just above the defect, the calculation with M
=M�=3 is very close to that obtained with M =M�=5 and
M =M�=11 �the convergence rate is quick�. On the other
hand, if the observation point moves away from the defect,
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the value obtained for M =M�=3 departs from that given
with M =M�=5 and M =M�=11. This result is in agreement
with the previous discussion on the influence of the “parasite
dipoles” which increases when the observation point is far
from the object. Note that, as expected, in the converged
cases, as the point of observation moves away from the de-
fect, the intensity comes closer to that obtained for the grat-
ing without the defect.

If the observation point is in far field �Figs. 3�c� and 3�d��
the sensibility to the number of modes M and M� is very
small due to the accurate evaluation of the far field with the
reciprocity theorem. In this case, the mode numbers influ-
ences solely the calculation of the field inside the defect and
the convergence of this near-field calculation is obtained
with a relatively small number of modes. For comparison
purpose, we also plot in the solid line the field scattered by
the defect alone on the substrate. In this example, we observe
that the grating does not modify the field scattered by the
defect in far field. This means that the coupling between the
defect �silver pad� and the silicon pads of the grating is weak.
In Fig. 4 the same study is conducted for a smaller period of
the grating, p=100 nm, so that a stronger coupling is ex-
pected. The same observations as that done for the previous
Figs. 3�a� and 3�b� can be done for Figs. 4�a� and 4�b� except
that the convergence is obtained for a significantly higher
number of modes M =M�=21. This was to be expected since
the period of the grating is smaller. In the far-field case, Figs.
4�c� and 4�d�, we observe that the field scattered by the de-
fect in the presence of the grating differs strongly from that
scattered by the defect alone on the substrate; this implies a
strong coupling between the defect and the grating. Note
that, contrary to the near-field calculation, the convergence is

almost reached for M =M�=3. The evaluation of the far-field
amplitude does not necessitate an accurate calculation of the
near field. Indeed, the propagation in vacuum is a low-pass
filter, so that the high-frequency components of the near field
�that are the most difficult to calculate accurately� are sup-
pressed. Hence very few modes are necessary to evaluate the
far-field scattered by the defect.

In Fig. 5, we study the number of duplicated motifs that
are necessary to simulate the presence of an infinite grating
and we compare the results to that of our method. The struc-
ture under study is the same as that of Fig. 4 and it is illu-
minated under normal incidence and in total internal reflec-
tion configuration 
=50�. We use the classic CDM12 to
simulate the field scattered by an object consisting in a silver
cube surrounded by a finite number of silicon cubes, i.e., we
truncate the sums in Eq. �1�: �m,n=−�

� 
�m,n=−Mmax

Mmax . Note that
the linear system that has to be solved in this case is quite

FIG. 2. �a� and �b� top view and side view of the geometry of
the system: the double-periodic structure is formed by pads in sili-
con with size a3, and a square periods p. The defect is a silver pad
with the same size �a3�, and the wavelength of the TM polarized
illumination is �=600 nm. �c� Near field intensity for a=50 nm,
p=200 nm, h=100 nm, and 
=0°. �d� Near-field intensity for a
=50 nm, p=200 nm, h=100 nm, and 
=50°.

FIG. 3. We present the modulus of the field in the near-field ��a�
and �b�� and in the far-field zone ��c� and �d��. Computations done
with M =M�=3 are in the dashed line, for M =M�=5 in the dot-
dashed line, and for M =M�=11 in the dotted line. �a� and �b�
modulus of the field in the near-field zone: z=h=100 nm, and y
= p /2=100 nm. In plain line the field obtained without the defect
�a� 
=0�. �b� 
=50�. �c� and �d� modulus of the field in the far-field
zone y=0 and x2+z2=1 m, and in the solid line the field scattered
by the defect without the double-periodic structure �c� 
=0�. �d� 

=50�.
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large �for example, 1600 base cells for Mmax=20�. In Fig. 5
we compare the near field above the defect, in the presence
of the infinite grating and for various truncated gratings. The
number of periods, Mmax, is successively equal to 0 �object
alone, dotted line�, Mmax=5 �dashed line�, and Mmax=20
�solid line�. The field scattered by the defect in the presence
of the infinite structure is represented by the bold line. For
the angle of incidence 
=50�, Fig. 4, we observe that more
than Mmax=20 is necessary to reproduce the influence of the
infinite grating. Under normal incidence, the convergence is
reached more easily but still, five periods are not enough to
give a good estimation of the field. This numerical test per-
mits the validation of our method and it shows the difficulty
of replacing the infinite grating by a truncated one. Note that
the time of computation with the classic CDM and the trun-

cated grating with Mmax=20 is 25 times larger than that of
our technique.

In Fig. 6 we give different examples of the wide possi-
bilities of our method. We keep the same grating as that of
Fig. 2 with p=100 nm and we change the nature of the de-
fect. All the calculations are performed with M =M�=11
since Fig. 4 has shown that convergence had been reached in
this case. In Figs. 6�a� and 6�b� we remove a silicon cube �we
create a lacuna with an aperiodic object with negative polar-
izability, opposite to that of the grating, �d�r̄ j�=−�Si�r̄ j��. In
Figs. 6�c� and 6�d� the silicon cube at the center of the image
is replaced by a silver cube �d�r̄ j�=−�Si�r̄ j�+�Ag�r̄ j�. In
Figs. 6�e� and 6�f� the silicon cube at the center of the image
is moved at the position �p /2�u+ �p /2�v; the method consists
in that case to first cancel one silicon cube by creating a
lacuna then adding a cube in silicon at the new position.
Note that all these different examples are easily computed
once the field susceptibility tensor of the grating is known.
When the illumination is normal to the substrate in Figs.
6�a�, 6�c�, and 6�e�, the incident electric field is directed
along the x axis. Assuming that the field direction in the
structure is close to that of the transmitted incident field, one
can explain the pattern of the near-field intensity by invoking
the continuity of the field displacement D=�E along the x
axis, �where � is either the permittivity of vacuum or that of
silicon�, and the continuity of E along the y axis. As ex-
pected, the field minimum is found inside the silicon pads,
and, by continuity, this low field is retrieved along lines ori-
ented along the y axis. The minimum of intensity above the
silicon pads neighboring the lacuna on the left and right can
also be explained by invoking the continuity of the field
displacement. In Fig. 6�c�, the central silicon pad has been
replaced by a silver pad. The resulting map of intensity is
close to that of the unperturbed grating. Indeed, at this wave-
length the permittivity of silver is close to that of silicon in

FIG. 4. We present the modulus of the field in the near-field ��a�
and �b�� and in the far-field zone ��c� and �d��. Computations done
with M =M�=3 are indicated with crosses �not represented in �a�
and �b��, for M =M�=5 in the dashed line, for M =M�=11 in the
dot-dashed line, and M =M�=21 in the dotted line. �a� and �b�
modulus of the field in near field zone: z=h=100 nm, and y= p /2
=50 nm. In the solid line the field obtained without the defect. �a�

=0�. �b� 
=50�. �c� and �d� modulus of the field in the far-field
zone y=0 and x2+z2=1 m, and in the solid line the field scattered
by the defect without the double-periodic structure �c� 
=0�. �d� 

=50�.

FIG. 5. The configuration used for these curves is the same as
the one used in Fig. 4. In the solid line the computation is done as
in Fig. 4 with M =M�=11. The other curves are obtained by trun-
cating the infinite sum in Eq. �1�. The curve in the dotted line is
obtained for the object alone �Mmax=0�, in the dot-dashed line with
Mmax=5, and in the dashed line with Mmax=20 �Mmax is defined in
the text�. �a� 
=50�. �b� 
=0�.
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absolute value ��Ag=−13+0.9i instead of �Si=15+0.2i�.
Hence one expects the intensity inside the silver pad to be
similar to that existing in a silicon pad. As a consequence,
the intensity map is not strongly modified by the presence of
this defect in the grating. In Figs. 6�b�, 6�d�, and 6�f�, the
incident angle is 
=50°, hence the transmitted incident field
is mostly directed along the z axis and it decays exponen-
tially quicker in air than in silicon. This might explain why
the field above the lacuna is smaller than the field above the
silicon pads in all these plots. The enhancement of the field
above the silver pad can be due to the fact that the polariz-
ability of the silver pad is bigger than that of the silicon pad,

so that the radiated field by the defect is stronger than that
radiated by a base cell of the grating. In Figs. 6�g� and 6�h�,
we have changed the grating and taken a triangular lattice
�u= �100,0� nm and v= �50,86� nm�. The defect consists in
a lacuna at the origin. The illumination is chosen so that
there is an angle of 10° between the x axis and k0�. To ex-
plain the main features of the intensity map, the same com-
ment as that given for Figs. 6�a� and 6�b� holds also in this
case.

IV. CONCLUSION

We have proposed a rigorous numerical technique based
on the principles of the coupled dipole method, that permits
the simulation of the field scattered by an object embedded
in a planar periodic structure. We have presented an efficient
means to calculate the field radiated by a dipole in the pres-
ence of a grating both in near and far field and studied care-
fully the convergence of the technique. The advantage of our
method is that it addresses any kind of inhomogeneous ob-
jects and gratings � in particular the object can be a lacuna�.
Moreover, in this paper, the periodic structure was deposited
on flat homogeneous substrate, but the latter could easily be
replaced by a multilayer �that supports guided waves, for
example�. Once the field susceptibility tensor of the grating
is known, the computation cost of the method depends solely
on the size of the object compared to the wavelength. It is
thus possible to study rapidly many kinds of defects. This
method should be very useful for designing optical planar
components using cavities in slices of two-dimensional pho-
tonic crystal.20,21

APPENDIX A: FIELD DIFFRACTED BY THE GRATING
IN ABSENCE OF THE DEFECT

Once the field susceptibility tensor of the double-periodic
structure is known for any pair of points �r ,r��, the field can
be evaluated at any position r by solving the linear system
Eq. �4� and using Eq. �5�. The last step is then to evaluate the
field that would exist in the absence of the defect, Eper. The
incident beam being a plane wave, Eper can be obtained by
any grating methods.3 With our formulation Eper is simply
given through

Eper�r̄ j� = E0�r̄ j� + �
l=1

N

Sper�r̄ j, r̄l,k0���p�r̄l�Eper�r̄l� ,

�A1�

with j=1,… ,N. To obtain Eq. �A1� we have used the fact
that the substrate is illuminated by a plane wave whose wave
vector k0, projected onto the �u ,v� plane is k0� so that

E0�r̄i + mu + nv� = E0�r̄i�exp�ik0� . �mu + nv�� . �A2�

The linear system �of size 3N�3N� represented by Eq. �A1�
is easy to solve, and then the electric field due to the double-
periodic structure can be computed at any arbitrary position
r:

FIG. 6. Near-field images obtained from a double-periodic
structure as described in Fig. 2 with p=100 nm, a=50 nm, k0�

along the x axis for the first six images, and with u= �100,0� nm,
v= �50,86� nm, k0� as showed in the figure for images �g� and �h�.
The square in the solid line represents the base cell and u and v
represent the basis vector of the double-periodic structure. We have
taken h=100 nm, and �=600 nm, and the pads are in silicon. �a�,
�c�, �e�, and �g� are obtained for 
=0°. �b�, �d�, �f�, and �h� are
obtained for 
=50°. �a�, �b�, �g�, and �h� the square in dashed line
represents a lacuna in the double-periodic structure. �c� and �d� the
square in the dashed line is in silver. �e� and �f� the square in dashed
line is a pad of silicon that has been displaced in the double-
periodic structure.
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Eper�r� = E0�r� + �
j=1

N

Sper�r, r̄ j,k0���p�r̄ j�Eper�r̄ j� . �A3�

More details on the numerical evaluation of Eper can be
found in Ref. 3.

APPENDIX B: EFFICIENT COMPUTATION OF THE MAP
OF Eper„r…

In this appendix we propose an efficient way to compute
Eper�r� for many positions above the grating with the
coupled dipole method. This technique can be useful to ob-
tain the map of the field at different altitudes �for near-field
microscopy experiments, for example�. Using the previous
appendix, we calculate the field on the surface of the base
cell at a constant altitude z above the grating. Bearing in
mind the pseudoperiodicity of the field, we cast the latter into
a Fourier series,

Eper�r�,z� = eik0�·r� �
m,n=−�

�

Em,n�k0�,z�ei�mU+nV�·r� , �B1�

with

Em,n�k0�,z� =
1

	u � v	 � �
Cell

Eper�r�,z�e−i�k0�+mU+nV�·r�dr� .

�B2�

Once the modes Em,n�k0� ,z� are known, one obtains the field
above the double-periodic structure at any altitude z� above
the grating with

Eper�r�,z�� = eik0�·r� �
m,n=−�

�

Em,n�k0�,z�e�i�mU+nV�·r�+�m,n�z�−z��,

�B3�

with �m,n= �k0
2− 	k0� +mU+nV	2�1/2.
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