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This document provides supplementary 
information to "Far-field diffraction microscopy at 
lambda/10 resolution," http://dx.doi.org/10.1364/
optica.3.000609. It describes the experimental set-
up of the full-polarized tomographic diffraction 
microscope and provides details on the 
reconstruction algorithm that is able to take 
advantage of an approximate knowledge of the 
target permittivity. A noise analysis and a 
comparison of the reconstructions obtained from 
synthetic and experimental data illustrate the 
performances of the imaging tool. © 2014 Optical 
Society of America
http://dx.doi.org/10.1364/optica.3.000609.s001

The sample to be imaged is described everywhere by a
known relative permittivity εbackground except in a bounded
domain Ω where it is equal to ε.The sample contrast is defined
as χ = ε − εbackground which is null outside Ω and unknown
in Ω. In our configuration, the background medium consists in
two semi-infinite media, air and silicon, separated by a planar
interface at z = 0. We assume that Ω is entirely included in air.

The aim of the Tomographic Diffraction Microscope (TDM)
is to retrieve χ(r) in Ω from the measurements of the far-
field fmes

l,m scattered by the medium in the km directions, m =
1, · · · , M, for L plane wave illuminations of wavevector kl ,
l = 1, · · · , L/2, and two independent polarization states. For
this matter, we have implemented a calibrated experiment
that yields the sample scattered far-field for plane wave
illuminations, we have used a rigorous model for simulating
the far-field frmsim

l,m for a given estimate of χ and we have
developed an efficient inversion method, based on this model,
that takes advantage of a priori information on the permittivity
values.

1. EXPERIMENTAL SETUP

The Tomographic Diffraction Microscopy setup is basically an
interferometric reflection microscope and is fully described
in [1]. It permits to detect the amplitude, phase and polarization
of the field scattered by the sample for various illuminations S1.
The light source is a super continuum laser (NKT Photonics
SuperK Extreme EXW-12), which is filtered at 475 nm with
a spectral width of 6 nm thanks to a variable bandpass filter
(NKT Photonics SuperK Varia). It is then linearly polarized and
divided into two parts. The first one is the illumination path:
the laser is directed towards a rotating mirror M (Newport
FSM-300) which is optically conjugated with the object plane
in front of the objective OL (Zeiss Epiplan-Apochromat 50×
with numerical aperture NA= 0.95 in air). Changing the
orientation of the mirror permits to illuminate the same zone
of the sample with various illumination angles. The collimated
beam illuminates the sample through the objective, part of it is
reflected by the sample, collected by the objective and detected
on a sCMOS camera (Andor Zyla) optically conjugated with
the object plane, with a global magnification of about 300. The
second light path is the reference path: the beam is spatially
filtered with a pinhole P and collimated to obtain an aberration
free reference wave. This beam is superimposed thanks to
beam splitter BS3 to the reflected field imaged on the camera.
Off-axis digital holography then permits to retrieve single shot
wise the amplitude and phase of the field, projected onto
the polarization of the reference field, at the image plane.
To retrieve all the components of the field for two incident
polarization, two half-wave plates have been placed in the
illumination and detection paths, respectively (HW1 and HW2).
They are used to generate two polarization bases for both the
reference and incident field. Hence, for each incident angle,
four measurements are performed.

To form the scattered far-field, two-dimensional Fourier
transforms are applied to the four complex image fields. The
value of the specular reflected beam, which is assumed to
be negligibly perturbed by the sample, is used to calibrate
the phase and amplitude of each Fourier hologram. Then,
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Fig. S1. Sketch of the experimental set-up: M, rotating mirror;
BE, beam expander; D, diaphragm; OL, objective lens; L1, tube
lens; L2,3, relay lenses ( f ′ = 3.5 cm and 20 cm, respectively);
BS1,··· ,3, beam splitters; P, pinhole; HW1,2, half wave plates.

the four holograms are combined so as to form the vectorial
transverse scattered far-fields along the directions allowed by
the microscope objective for both TE and TM polarization states
of the illumination, namely fmes

l,m [1].

2. FORMULATION OF THE FORWARD SCATTERING
PROBLEM

The simulation of the field scattered by a given sample contrast
χ is performed thanks to the dipole discrete approximation
(DDA) [2, 3]. This well known method is briefly described
herein to introduce the notations used for the inverse problem.

The objects under study are represented by a cubic array
of N polarizable subunits and the field at each subunit is
expressed with the following self-consistent equation

E(ri) = Einc(ri) +
N

∑
j=1

G(ri, rj)χ(rj)E(rj), (S1)

where Einc(ri) denotes the incident field at the position ri,
χ(rj) = ε(rj) − εbackground is the permittivity contrast and G
is the Green function that accounts for the substrate. In other
terms, G(ri, rj)p represents the field at ri radiated by a dipole p
placed at rj in the background medium.

Once the linear system represented by Eq. (S1) is solved, the
scattered far-field in the k direction, f(k), can be computed with

f(k) =
N

∑
j=1

Gd(k, rj)χ(rj)E(rj), (S2)

where Gd is the Green function that accounts for the substrate
in far field [4, 5].

The self consistent equation, Eq. (S1), can be rewritten in a
more condensed form as

E = Einc + AχE, (S3)

where A is a square matrix of size (3N × 3N) and contains all
the Green function G(ri, rj). E and Einc are the total field and
the incident field, respectively.

In a TDM experiment, the scattered field is collected along
M observation directions for L successive illuminations. Let
fl be the column vector of dimension 3M (the 3 stands for the

three components along (x, y, z) of the field) corresponding to
the scattered fields fl,m, m = 1, · · · , M obtained for the l-th
illumination. We can rewrite the far field equation, Eq. (S2), in
the following condensed form

fl = BχEl , (S4)

where l = 1, · · · , L, and B is a matrix of size (3M × 3N).
The matrix B contains the Green function Gd(km, rj), where rj
denotes a point in the discretized object, j = 1, · · · , N, while km
is an observation direction, m = 1, · · · , M. Note that B does not
depend on the angle of incidence.

3. ANALYZING THE NOISE ON THE SCATTERED FAR-
FIELDS AND REDUCING ITS INFLUENCE

In this section, we consider the two star-samples depicted
in Figs. (2,3) of the letter and we compare the experimental
scattered far-field to the theoretical one. The latter is
simulated using the Coupled Dipole Method with the contrast
distribution χtrue suggested by the electronic microscope image.
Figures S2 and S4 show the modulus of the three components of
the far-field for the ’large’ and ’small’ star, respectively. These
figures point out calibration errors and additive noise. The
calibration error is about 2 for incidences close to the edge
of the numerical aperture and decreases to 1 for incidences
close to the normal incidence. The additive noise is present
for all incidences and can be interpreted as speckle field
stemming from dust outside the sample. As expected, it is more
disturbing for the small star-sample than for the ’large’ one,
compare Fig. S4 with Fig. S2. This observation is confirmed by
the comparison of the experimental and theoretical diffracted
field phases in Figs. S3 and S5.

In order to diminish the influence of the speckle noise
in the inversion, we have implemented an efficient pre-
processing of the data prior the inversion. This processing
is based on DORT (french acronym for Décomposition de
l’Opérateur de Retournement Temporel) method which is the
monochromatic counterpart of the time reversal method. It has
been successfully applied to the retrieval of scatterers present
in a highly cluttered medium for the two-dimensional problem
in Ref. [6] and in Refs. [7, 8] for the three-dimensional case.
The DORT procedure requires to record the field (amplitude
and phase) scattered by the sample for various illuminations
in order to build the scattering matrix F of the scatterer, i.e. a
matrix that relies the incoming field to the outgoing one. In
our case, F ={fmes

l,m } and it relies the illumination space to the
observation space. It has been shown that singular eigenvectors
of F in the illumination space correspond to incident beams that
focus specifically on the target [8]. By limiting the incident
intensity to a small region about the sample, these focusing
illuminations lower significantly the speckle noise.

Hereafter, we replace the L plane wave illumination by the L
singular eigenvectors of the scattering matrix F. Thus, the input
data in the inversion scheme are now given by the L scattered
far-field associated to these L focusing illuminations. Using
these synthesized fields instead of the standard ones turns
out to significantly improve the reconstructions whenever the
targets under test are present in a noisy environment and/or
the measurements are corrupted with a high level of noise.
From now on, we refer as scattered and incident fields the fields
constructed thanks to the singular value decomposition of the
scattering matrix F.
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Fig. S2. Modulus of the diffracted field experimentally and
theoretically for the star with width about 97 nm.
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Fig. S3. Phase of the diffracted field experimentally and
theoretically for the star with width about 97 nm.
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Fig. S4. Modulus of the diffracted field experimentally and
theoretically for the star with width about 76 nm.
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Fig. S5. Phase of the diffracted field experimentally and
theoretically for the star with width about 76 nm.
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4. INVERSION ALGORITHM

The realm of inverse scattering problem is to determine the
relative permittivity distribution of samples from the measured
scattered far-field. The most popular strategies to solve these
nonlinear and ill-posed problem is to determine the parameters
of interest iteratively. In the present paper, two iterative
schemes have been applied. The first one is the hybrid-iterative
method that does not require the knowledge of the constitutive
material of samples under test. This technique has been already
presented by the authors elsewhere and therefore will not be
described here, for details see Refs. [9, 10].

In this section, we focus on the second technique which
accounts for a partial knowledge of the sample permittivity and
is referred as the Bounded Inverse Method (BIM). The objective
is to estimate χ in the investigating domain Ω. The basic ideas
underlying BIM is to build up iteratively a sequence of χn by
minimizing a cost functional of the form [11, 12]

F (χn) = WΓ

L

∑
l=1

‖fmes
l − fsim

l ‖2 = WΓ

L

∑
l=1

‖fmes
l − BχnEl,n‖2, (S5)

with WΓ =
(

∑L
l=1 ‖fmes

l ‖2
)−1

and where fmes
l is the

experimental data and Esim
l is the simulated field scattered by

the best available estimated sample contrast χn.
We now assume that the relative permittivity distribution in

Ω varies within the interval [εbackground, εref] where εref is the
known permittivity of the target. To enforce a binary behavior
to the permittivity distribution, the contrast χ is rewritten in the
form,

χ(ξ) = (εref − εbackground)
[
1 − exp(−ξ2)

]
, (S6)

where ξ is an auxiliary function which is the new parameter
that is minimized in the inversion algorithm. The derivative of
χ with respect to ξ reads as:

dχ

dξ
= (εref − εbackground)

[
2ξ exp(−ξ2)

]
. (S7)

In Fig. S6 we plot χ and χ′ = dχ
dξ versus ξ. Using this

formulation, small values of ξ correspond to the background
medium (χ = 0) and large values of ξ correspond to the target,
εref − εbackground.

The inverse problem is then reformulated as building a
sequence of ξn so as to minimize the cost functional G(ξn) =
F [χ(ξn)]. A sequence of auxiliary function ξn is then retrieved
according to the updating relation ξn = ξn−1 + α

ξ
ndξ

n, where
dξ

n is an updating direction and αξ is a real valued scalar that
minimizes the cost function F(αξ

n) = F [χ(ξn−1 + α
ξ
ndξ

n)].
Unfortunately, due to the transformation introduced in

Eq. (S6), there is no analytic expression of αξ that minimizes
the cost function F. Now, the numerical determination of
this minimum [13] is severely time consuming. We have thus
proposed an alternative approach which consists in assuming
that α

ξ
ndξ

n is small enough so that the permittivity contrast χn
can be expanded to first order in ξn−1. The exponential term
in Eq. (S6) is then expressed as exp(−ξ2

n) = exp(−ξ2
n−1) −

2ξn−1α
ξ
ndξ

n exp(−ξ2
n−1), and subsequently

χn ≈ χn−1 + 2α
ξ
n(εref − εbackground)ξn−1dξ

n exp(−ξ2
n−1),(S8)

≈ χn−1 + α
ξ
nvn, (S9)

with,

vn = 2(εref − εbackground)ξn−1dξ
n exp(−ξ2

n−1). (S10)

Substituting this expression of χn into the cost function F, leads
to a polynomial expression with respect to the scalar coefficient
α

ξ
n,

Fn(χn) = WΓ

L

∑
l=1

(
‖hl,n−1‖2 + (αξ

n)
2‖BvnEl,n‖2

− 2α
ξ
nRe

〈
hl,n−1|BvnEl,n

〉)
. (S11)

Writing down the necessary condition of F to be minimum, i. e.
∂Fn(χn)

∂αξ
n

= 0, provides the unique minimum of Fn(χn)

α
ξ
n = WΓ

L

∑
l=1

Re
〈
hl,n−1|BvnEl,n

〉

‖BvnEl,n‖2 . (S12)

This analytic expression of α
ξ
n reduces drastically the time

computation.
As the updating direction dξ

n, the authors took the standard
Polak-Ribière conjugate-gradient directions [14].

dξ
n = gξ

n + γ
ξ
ndξ

n−1, γ
ξ
n =

〈
gξ

n, gξ
n − gξ

n−1

〉
Ω

‖gξ
n−1‖2

Ω

, (S13)

where gξ
n is the gradient of the cost functional G(ξ) with respect

to the parameter ξ assuming that the internal fields do not
change [13]:

gξ
n = gχ

n
dχ

dξ
, (S14)

gχ
n = −WΓ

L

∑
l=1

E∗
l,n−1.B†hl,n−1. (S15)

By construction, the updating direction associated to χ′ =
dχ
dξ tends towards 0 for small and large values of ξ. Hence,
the transformation introduced in Eq. (S7) promotes the extreme
values εbackground and εref for the estimated permittivity.

In all reported reconstructions the initial guess is a weak
scattering object with constant contrast χinitial = 0.01 which
yields approximately the same level of scattered far-field
amplitude and the pixel size is 20 nm. The convergence
of the conjugate gradient technique proved relatively slow
with oscillating values of the cost function. To speed up
the algorithm we thus implemented a fast iterative shrinkage-
thresholding (FISTA) algorithm [15] using only the simple
gradient direction i. e. dξ

n = gξ
n. With FISTA only 50 iterations

were needed to get the convergence. The reconstruction of the
stars took approximately 3 hours on a computer with processor
Intel(R) Xeon(R) at 3.40 GHz.

5. THREE-DIMENSIONAL INVERSION OF THE STAR-
SAMPLES, SYNTHETIC AND EXPERIMENTAL DATA

In this section, we compare the reconstructions of the star-
samples when the inversion is performed on (quasi noiseless)
synthetic data and on experimental data. In the first case, the
stars are retrieved almost perfectly, see Fig. S7 with a resolution
corresponding to the size of the pixel, 20 nm. The comparison
between Fig. S7 and the images obtained from the experimental
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Fig. S6. Expression of the contrast χ and its derivative χ′ = dχ
dξ
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data, see Figs. (2,3) of the letter, allows one to visualize the non-
negligible influence of noise on the reconstructions.

Figure S8 reports the three-dimensional iso-contour (taken
at the value ε = 1.9 in order to get the air-resin interface) of the
reconstructed star-samples obtained from synthetic data and
experimental data. It is observed that the speckle noise and the
calibration errors yields an overestimation of the sample height
at the apex of the branches of the star.
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Fig. S7. Reconstruction of the star-samples from synthetic data
(a) Star with 76 nm width. (b) Star with 97 nm width.
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