
Improving three-dimensional target reconstruction in the multiple scattering regime
using the decomposition of the time-reversal operator
Ting Zhang, Patrick C. Chaumet, Anne Sentenac, and Kamal Belkebir

Citation: J. Appl. Phys. 120, 243101 (2016); doi: 10.1063/1.4972470
View online: http://dx.doi.org/10.1063/1.4972470
View Table of Contents: http://aip.scitation.org/toc/jap/120/24
Published by the American Institute of Physics

http://aip.scitation.org/author/Zhang%2C+Ting
http://aip.scitation.org/author/Chaumet%2C+Patrick+C
http://aip.scitation.org/author/Sentenac%2C+Anne
http://aip.scitation.org/author/Belkebir%2C+Kamal
/loi/jap
http://dx.doi.org/10.1063/1.4972470
http://aip.scitation.org/toc/jap/120/24
http://aip.scitation.org/publisher/


Improving three-dimensional target reconstruction in the multiple scattering
regime using the decomposition of the time-reversal operator

Ting Zhang,1,2 Patrick C. Chaumet,1 Anne Sentenac,1 and Kamal Belkebir1
1Aix Marseille Universit�e, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13013 Marseille, France
2Sorbonne Universit�es, UPMC Univ Paris 06, UR2, L2E, F-75005 Paris, France

(Received 7 September 2016; accepted 5 December 2016; published online 22 December 2016)

The singular vectors of the time reversal operator (d�ecomposition de l’op�erateur de

retournement temporel, time reversal operator decomposition (DORT) processing) are often

used for localizing small echogeneous targets in a cluttered environment. In this work, we show

that they can also improve the imaging of relatively large and contrasted targets in a

homogeneous environment. It is observed that non-linear inversion schemes, minimizing itera-

tively the discrepancy between experimental data and simulated field scattered by target esti-

mates, are more efficient when the illuminations correspond to the DORT singular vectors. In

addition, DORT preprocessing permits a drastic diminution of the data load and computer bur-

den. This study is conducted with experimental microwave data of targets with size comparable

or greater than the wavelength. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4972470]

I. INTRODUCTION

In the last two decades, a wealth of research has been

devoted to the development of inverse techniques that

reconstruct targets from their electromagnetic (either

microwave or optical) scattered far-field measured for dif-

ferent illuminations. This task is particularly difficult when

the field inside the target differs significantly from the illu-

mination due to multiple scattering. This challenge is par-

ticularly interesting as accounting for multiple scattering

in the inversion model could ameliorate the image resolu-

tion.1 In this case, the inverse problem becomes non-linear

and ill-posed and requires sophisticated reconstruction

techniques. The latter generally estimates iteratively the

permittivity distribution of the target within a given inves-

tigating domain so as to minimize a cost functional repre-

senting the distance between the data and the simulated

field scattered by the estimate. Two main approaches can

be distinguished. The linearized one assumes that, at each

iteration step, the field in the investigating domain is the

solution of the forward scattering problem for the best

available target estimation.2–4 On the other hand, the non-

linearized ones consider the field in the investigation

domain as an additional parameter that is estimated

together with the permittivity distribution thanks to a mini-

mization procedure.5,6 A third approach, known as the

hybrid method (HM) in Ref. 6, combines both methods for

benefiting from the robustness of the non-linearized tech-

nique with the rapidity of the linearized one. However,

despite these different developments, the accurate inver-

sion of scattering data stemming from relatively large and

contrasted targets is not always ensured. To improve

the inversion performances, a popular technique relying

on a priori information on the sample consists in

adding regularization terms to the cost functional.7,8 In

this work, we propose a complementary approach based

on the optimization of the illuminations through the

singular value decomposition (SVD) of the scattering

operator.

In most imaging experiments, the sample scattered field

is recorded on many observation points for different illumi-

nations. These illuminations may correspond to the field

emitted by antennas placed at various positions or to colli-

mated beams coming under various angles. In any case,

they do not depend on the sample. Now, using illuminations

that focus preferentially on the sample is a priori more effi-

cient for collecting useful data on the sample.9,10 This can

be done using the d�ecomposition de l’op�erateur de retourne-

ment temporel, time reversal operator decomposition tech-

nique (DORT), which consists in backpropagating the

dominant singular vectors of the scattering operator. DORT

has been widely used to detect, localize, and image small

(compared to the wavelength) echogeneous targets buried

in a cluttered environment.5,11–15 It has been shown in this

case that the number of dominant singular values is directly

linked to the number of echogeneous targets and that the

associated singular vectors correspond to waves focusing

on the targets.

In this work, we consider relatively large and scattering

targets in a homogeneous environment. The imaging diffi-

culty does not come from the structural or external noise

but from the presence of multiple scattering which requires

non-linear or linearized inversion schemes to be handled

properly. We show that introducing the DORT technique in

the reconstruction schemes ameliorates significantly the tar-

get reconstruction and, in addition, decreases the computa-

tion time.

In the following, we first describe the DORT

approach. Then, we rapidly sketch different inversion

schemes accounting for multiple scattering and recall how

DORT preprocessing can be introduced in the iterative

reconstruction.5 Lastly, we apply the inversion tools with
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and without DORT preprocessing to experimental micro-

wave data.

II. SINGULAR VALUE DECOMPOSITION OF THE
SCATTERING OPERATOR

We consider a multistatic imaging experiment operating

at a single angular frequency x. In the experiment, the target

is assumed to be confined in a known bounded region X. The

target is successively illuminated by l ¼ 1;…; L emitters

placed at rl and polarized along ê
inc
l . For each illumination,

q ¼ 1;…;Q receivers, placed at rq and oriented along

êq, measure the projection of its scattered field onto êq.

Thus, for the l-th illumination, Q scalar data are recorded

and gathered in a scattered field vector denoted by fmes
l

¼ ½f mes
l;1 ;…; f mes

l;Q �
t

where t denotes the transposed vector. The

scattering matrix K is built such that Klq represents the scalar

projection of the scattered field measured at the q-th receiver

for the l-th emitter. The Singular Value Decomposition

(SVD) of the L�Q scattering matrix K yields a set of

singular real values rp, p ¼ 1;…;minðL;QÞ, associated

with singular vectors of dimension Q, vp and singular vectors

of dimension L, up, such that, whatever the vector x of

dimension Q

Kx ¼
XminðL;QÞ

p¼1

uprp½vt
p:x�: (1)

A similar expression is obtained for any vector y of dimen-

sion L by interchanging the role of up and vp and replacing

K by its transpose. The Q-vector Kty is the scattered field

vector that would be measured on the Q receivers if the

amplitudes y were put on the L emitters. Thanks to the

reciprocity theorem, the role of the emitters and receivers

is interchangeable so that the L-vector Kx can be considered

as the scattered field vector on the L emitters (playing

the role of receivers) when the amplitudes x are put on the

Q receivers (playing the role of emitters).13,16,17

The analysis of the singular values permits us to distin-

guish the singular vectors that convey useful information on

the target from those that are mostly noise.18 Hereafter, we

call NDORT the number of dominant singular values which

separates the signal space from the noise space.

When the targets are small compared to the wavelength,

the number of dominant singular values is equal to the num-

ber of targets times the polarization of the antennas, and it is

relatively easy to distinguish the singular vectors belonging

to the signal space from that belonging to the noise space. It

has been shown that the backpropagation of these dominant

singular vectors generates illuminations that focus on the

targets, even when the latter are placed in a cluttered envi-

ronment.5,14,19 Keeping only the data corresponding to the

dominant singular vectors in an ill-posed inverse problem

has also been shown to act as a Tikhonov regularization

under certain conditions.20,21

When the size of the scatterer is comparable to or larger

than the wavelength, the number of dominant singular values

is not simply linked to the number of scatterers, and it

becomes more difficult to distinguish the signal space from

the noise space. In this case, it has been proposed to keep all

the singular vectors in the process but to weight their contri-

bution with their singular value.22 This approach is particu-

larly adapted to our imaging experiment where the targets

are relatively large and contrasted. Hereafter, the data proc-

essing uses exclusively the singular vectors multiplied by

their singular value, which are called DORT vectors. It is

worth noting at this point that the weighting of the singular

vectors can be combined with a discarding of the “noisy”

singular vectors (if the behavior of the singular values per-

mits a clear demarcation between the signal and noise

spaces). This is an important feature of our data processing,

which will be discussed in the “Reconstruction” section.

The focusing DORT incident field can be either calcu-

lated with the Q-vector vp or the L-vector up. In our experi-

mental configuration where Q>L, it is more interesting to

use vp to generate the DORT illuminations and to detect the

scattered field on the L emitters as it decreases the number of

data to NDORT�L (in place of NDORT�Q).

For one position vector r inside the investigating domain

X, the focusing DORT incident field can be written as

EDORT
p ðrÞ ¼

XQ

q¼1

rpvp;qGðr; rqÞêq; (2)

where Gðr; rqÞp represents the field at r emitted by a dipole

p located at rq. The corresponding scattered field detected on

the L emitters, fDORT
p associated with the DORT incident

field EDORT
p , is equal to Kvp and reads

fDORT
p;l ¼

XQ

q¼1

rpvp;q f mes
l;q êq: (3)

The DORT preprocessing consists in forming a set of

data fDORT
p for the NDORT dominant singular values from the

measured f
mes.

III. THE INVERSION PROBLEM

The realm of inverse scattering problems is to determine

the relative permittivity distribution of samples from the

measured scattered field. In this study, we consider the imag-

ing of targets that support multiple scattering. In this case,

the reconstruction of the target generally requires the rigor-

ous solving of Maxwell equations for the different permittiv-

ity estimates (forward problem). The Maxwell solver is

usually at the core of the inversion algorithm.

A. The forward problem

In our approach, the forward problem is solved thanks to

the Discrete Dipole Approximation (DDA).23,24 Since this

method is well known, it is only briefly described to settle

the notation used for the inverse scattering problem.

The object is described by a permittivity contrast distri-

bution v¼ e – eb, which is defined as the difference between

the object relative permittivity e and the background

medium eb. It is assumed that v is null outside a bounded

investigating region X. The DDA consists in discretizing

243101-2 Zhang et al. J. Appl. Phys. 120, 243101 (2016)



X into M small subunits so as to cast the Maxwell equations

into a self-consistent linear system, written in operator

notation

E ¼ Einc þ AvE (4)

that is solved numerically. In Eq. (4), v is a diagonal matrix

vmm ¼ vðrmÞ; A is a square matrix of size (3M� 3M) of gen-

eral term Gðrm; r
0
mÞ, and E and Einc are the total field and the

incident field, respectively. The scattered field corresponding

to the l-th illumination can be written in the following con-

densed form:

Ed
l ¼ BvEl; (5)

where l ¼ 1;…; L, and B is a matrix of size (3M� 3Q). The

matrix B contains the Green function Gdðrq; rmÞ, where rm

denotes a point in the scattering domain, m ¼ 1;…;M, while

rq is an observation point, q ¼ 1;…;Q. Note that B does not

depend on the angle of incidence.

B. Inversion schemes

The reconstruction of the target permittivity distribution

from the measured scattered field in the multiple scattering

regime corresponds to a nonlinear and ill-posed inverse

problem. The most popular strategies consist to determine

the parameters of interest iteratively. In the present paper,

two iterative schemes have been applied. The first one is a

classical linearized approach base on conjugated gradient

technique (CGM)25 and the second one is a non-linear hybrid

method (HM).6 Both methods have been well documented in

the past, and we provide only a rapid description of their

main features for consistency.

1. Conjugated gradient method: CGM

The basic idea underlying the CGM solution is to build

up iteratively a sequence of the sought permittivity contrast

v within X by minimizing a cost functional of the form

F n vnð Þ ¼
khl;nk2

C

PN
l¼1

kfmes
l k

2
C

¼ WC

XN

l¼1

khl;nk2
C (6)

with hl;n ¼ fmes
l � BvnEl;n is the residual error computed

from Eq. (5), which represents the discrepancy between the

measured scattered field and the simulated scattered field of

the estimation vn. The subscript C in the norm k:k and later

in the inner product h:; :i indicates that the integration is per-

formed over the receivers. The total field El,n is the solution

of the self consistent equation with the contrast distribution

vn�1 : El;n � El;n�1 ¼ ½I� Avn�1��1
Einc

l . At each iteration

step n, the permittivity contrast distribution vn is built up

according to the following recursive relation:

vn ¼ vn�1 þ bndn; (7)

where the updated contrast vn is deduced from the previous

one, vn�1, by adding an updating term bndn. This correction

term is composed of two factors: a real valued scalar weight

bn and an updating direction dn. The scalar weight bn is

determined by minimizing the cost functional F nðvnÞ.
Substituting the expression of the parameter of interest vn

Eq. (7) into the cost functional Eq. (6) leads to a polynomial

expression with respect to the scalar weight bn

F nðvnÞ ¼ FðbnÞ ¼ WC �
XN

l¼1

ðkhl;n�1k2
C þ b2

nkBdnEl;nk2
C

þ 2bnRehhl;n�1jBdnEl;niCÞ: (8)

The unique minimum of Fn(bn) is reached when
@FnðvnÞ
@bn
¼ 0

bn ¼ WC

XN

l¼1

Rehhl;n�1jBdnEl;niC
kBdnEl;nk2

C

: (9)

As for the updating direction dn, we take the standard Polak-

Ribière conjugate-gradient directions. With CGM, the

improvement condition is not satisfied, i.e., the minimized

function does not always decrease,6 in particular, in the pres-

ence of high level of noise or in the multiple scattering

regime. In this case, the final reconstruction result is chosen

to be the one corresponding to the lowest value of the mini-

mized cost function.

The first estimate for vinit is derived from the backpropa-

gation procedure.26,27 We define a polarization density as

Pinit
l ¼ vinitEinit

l ¼ clB
†fmes

l ; (10)

where B† denotes the transpose complex conjugate matrix of

the matrix B. The scalar weight cl is determined by minimiz-

ing the cost function H(cl) describing the discrepancy between

the data fmes
l and those that would be obtained with Pinit

l

HðclÞ ¼ kfmes
l � BPinit

l kC ¼ kfmes
l � clBB†fmes

l kC: (11)

Writing down the necessary condition @H/@cl¼ 0 for H to be

minimum leads to an analytic expression of cl

cl ¼
hBB†fmes

l jfmes
l iC

kBB†fmes
l kC

: (12)

Once the estimation of Pinit is determined, an estimation of

the total field Einit
l in the investigating domain can be derived

as Einit
l ¼ Einc

l þ APinit
l . Finally, the initial guess for the per-

mittivity distribution vinit is given by the backpropagation

method

einit rð Þ ¼ 1þ Re

XL

l¼1

Pinit
l rð Þ:�Einit

l rð Þ

XL

l¼1

kEinit
l rð Þk2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; (13)

where �x is the complex conjugate of x.

2. DORT with conjugated gradient method: DORT-CGM

It has been shown that the backpropagation of the emer-

gent singular vectors provides a means for generating new
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incident fields focusing onto a given scatterer.5 We propose

here to introduce this information in the inversion procedure.

In the DORT-CGM inversion procedure, the focusing

field derived from Eq. (2) is considered as the new incident

field for the inverse scattering problem. We consider only

the DORT singular vectors that are associated with the most

significant singular values. Then, instead of the original

fields Einc
l;a and fmes

l , we consider NDORT incident backpropa-

gated DORT fields EDORT
p and NDORT associated scattered

fields fDORT
p in the iterative scheme. Henceforth, the contrast

permittivity distribution within the investigating domain X is

determined iteratively by minimizing a cost functional which

reads at the iteration step n

FDORT
n vnð Þ ¼

XNDORT

p¼1

khDORT
p;n k2

C

XNDORT

p¼1

kfDORT
p k2

C

; (14)

where the residual error hDORT
p;n is defined as hl,n

hDORT
p;n ¼ fDORT

p � BvnEDORT;tot
p;n : (15)

The updating directions are taken to be of the same form as

the ones described in Section III B 1, where the involved gra-

dients are computed from the cost functional FDORT
n instead

of F n. The initial guess of the permittivity is computed

through the footprint of the sum of the intensities of the

backpropagated dominant DORT fields

einit rð Þ ¼ 1þ 0:1�

XNDORT

p¼1

kEDORT
p rð Þk2

X

maxX

XNDORT

p¼1

kEDORT
p rð Þk2

X

2
4

3
5

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

: (16)

In Eq. (16), the maximum permittivity contrast of the initial

guess has been set to 0.1. This value, which corresponds to

the maximum contrast that is generally obtained with the

backpropagation procedure, Eqs. (10) and (11), ensures that

the light scattered by the first estimate satisfies Born approxi-

mation and that it is of the same order of magnitude as the

backpropagation procedure, Eq. (13).

3. Hybrid method (HM), with DORT (DORT-HM)

The hybrid method has already been detailed in previous

publications,5,28 and only its main features are recalled here.

It retrieves simultaneously the sample permittivity contrast v
and the total field El in the investigation domain. At each

iteration step n, the cost functional reads

F n vn;El;nð Þ ¼

XL

l¼1

khl;nk2
C

XL

l¼1

kfmes
l k

2
C

þ

XL

l¼1

kgl;nk
2
X

XL

l¼1

kEinc
l k

2
X

; (17)

where gl,n is a residual error on the field inside the investigat-

ing domain

gl;n ¼ Einc
l � El;n þ AvnEl;n: (18)

The minimization is performed using the Hybrid Method

(HM) described in Ref. 6. In order to take into account the

focusing fields derived from the SVD, the original scattered

and incident fields are changed to fDORT
p and EDORT

p , respec-

tively. The iteration process is stopped when the cost func-

tion reaches a plateau.

IV. RECONSTRUCTION OF DIFFERENT TARGETS
FROM EXPERIMENTAL MICROWAVE DATA

In this section, we compare the reconstructions given by

the inversion methods, with and without DORT preprocess-

ing, of different targets taken from the microwave database

presented in Ref. 29. These data are particularly suited for

our comparisons because many inversion techniques have

already been applied to these measurements.

A. Experimental configuration and targets geometry

The experimental configuration is depicted in Fig. 1,

for more details on the set-up see Refs. 30 and 31. The inci-

dent wave is assumed to be a plane wave propagating in the

(x, y) plane with hinc ranging from 0� to 350� with a step 10�

(green line) and polarized along z direction (/inc ¼ 90�),
which corresponds to L¼ 36 emitters.

The receiver positions are indicated by the polar angle

hdiff ranges from 0� to 320� with the angular step 40� and the

azimuthal angle /diff ranges from 30� to 150� with the angu-

lar step 15� (red line) yielding 81 different observation direc-

tions. For each position, the receiving antennas are oriented

along x, y, and z axes in order to record the full vectorial

scattered field. Following our notations, the detection config-

uration corresponds to Q¼ 3� 81 receivers. The background

medium is air, eb¼ 1.

FIG. 1. Sketch of the experimental setup.29 The illumination is performed in

the (x, y) plane with hinc varying from 0� to 350� step 10� (green line). The

observation angle hdiff varies from 0� to 320� step 40� and /diff from 30� to

150� step 15� (red line).
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Three different targets are considered in this work.

The first one [Fig. 2(a)] is made of two cubes placed along

the z-axis of relative permittivity e¼ 2.4 and of side size

a¼ 2.5 cm, and separated along the z-axis by 5 cm. It is illumi-

nated at the operating frequency 8 GHz so that the side of each

cube is about one wavelength inside the object (k=
ffiffi
e
p
� a).

The second one is made of two dielectric spheres of rel-

ative permittivity e¼ 2.6 and of radius r¼ 2.5 cm in contact,

as shown in Fig. 2(b). The operating frequency is 4 GHz so

that the diameter of each sphere corresponds again to one

wavelength inside the object (k=
ffiffi
e
p
� 2r). Target B is more

difficult to reconstruct than target A because the two spheres

are in contact.

Last, target C is a cylinder of length 8 cm, radius 4 cm,

and permittivity 3.05. In this case, the operating frequency is

3 GHz. This target is more difficult to reconstruct than tar-

gets A and B because its size is almost 1.5 times the wave-

length in the object and its permittivity is high. To our

knowledge, all the inversion methods without regularization

that have tackled this problem (including the CGM and HM)

failed.25,29,32,33 Thus, target C is a particularly good example

for pointing out the interest of DORT preprocessing.

In a classical DORT procedure, the key point is to deter-

mine the number of useful singular values, NDORT, which

will be retained in the inversion. In Fig. 3, we plot the singu-

lar values of the scattering matrix for each target. All curves

exhibit a discontinuity when the singular value reaches

r¼ 0.07. The experiments being performed with the same

additive noise, the latter can be interpreted as a boundary

between the signal and noise space. From these evolution

curves, one infers that the number of dominant singular val-

ues for target A is five while it is nine for target B and six-

teen for target C. As expected, the number of dominant

singular values increases with the target size.

Note however that, in our approach, the DORT illumina-

tions are weighted by their corresponding singular values,

Eq. (2). When the singular values are weak, the associated

scattered fields (Eq. (3)) contribute marginally to the cost

functional. Thus, with our formulation, the removal of the

noise space is not really necessary. It is essentially useful to

decrease the number of data and the computation time.

B. Reconstructions

For all the inversions, the investigation domain is a

bounded box X sized (12.5� 12.5� 12.5) cm3 and its discre-

tization size is taken equal to d¼ 0.5 cm, which is smaller

than one sixth of the wavelength whatever the experiment. In

all the reported results, only the real part of the reconstructed

permittivity is displayed, the imaginary part being always

very small.

In this section, we compare the final reconstructions

given by the classical conjugated gradient method (CGM),

the classical hybrid inversion method (HM), the conjugated

gradient method combined with DORT procedure (DORT-

CGM), and the hybrid method combined with the DORT

procedure (DORT-HM), for target A, Fig. 4; target B, Fig. 5;

FIG. 2. Geometry of the targets. (a)

Target A: Two dielectric cubes of rela-

tive permittivity e¼ 2.4 and of side

a¼ 2.5 cm located at (a/2, a/2, a/2)

and (a/2, a/2, 5a/2). (b) Target B: Two

dielectric spheres in contact of relative

permittivity e¼ 2.6 and radius

r¼ 2.5 cm located at (�r, 0, 0) and (r,

0, 0). (c) Target C: Cylinder of radius

r¼ 4 cm, length L¼ 8 cm, with relative

permittivity e¼ 3.05.

FIG. 3. Evolution curves of the singular values for target A (*), target B (�),

and target C (þ).

243101-5 Zhang et al. J. Appl. Phys. 120, 243101 (2016)



and target C, Fig. 6. In addition, we display the initial esti-

mates of the methods, either given by the backpropagation

technique Eq. (13)26,27 and/or by the DORT intensity map,

Eq. (16).

To quantify the quality of the images, a contrast recon-

struction error is defined as

Errv ¼
kvactual � vreck2

X

kvactualk2
X

: (19)

From Figs. 4–6 and Table I, it is first seen that HM is

always superior to CGM for inverting the experimental data.

This observation is in agreement with previous studies by

analyzing the performances of the linearized and non-linear

inversion schemes.34

Second, whatever the inversion technique, the DORT

preprocessing ameliorates the target reconstruction. It

reduces the permittivity inhomogeneities inside the objects,

renders the value of the estimated permittivity closer to the

actual one, and in the case of target C, it is mandatory for

getting an accurate permittivity distribution. It is worth

recalling that, because of its size and high permittivity con-

trast, target C is very difficult to retrieve.25,33,35,36 Sole regu-

larized inversion techniques were able to reconstruct it

relatively accurately.7,8 Here, using the DORT preprocessing

and without any regularization, we are able to reconstruct

the cylinder with DORT-HM. Our approach yields an esti-

mation of the relative permittivity of about 3 (for an actual

value of 3.05), while the regularized techniques obtained an

estimation of the relative permittivity about 2.7,8

FIG. 4. Cut of the reconstructed permittivity of target A (two cubes along the z-axis) displayed in Fig. 2(a) using different inversion schemes. (a)–(c) and

(g)–(i): in the (x, y) plane at z¼ 1.25 cm. (d)–(f) and (g)–(l): in the (x, z) plane at y¼ 1.25 cm. (a) and (d) permittivity obtained by the classical backpropagation

procedure, see Eq. (13). (g) and (j) Permittivity obtained with DORT, see Eq. (16). (b) and (e) Reconstruction using CGM. (c) and (f) Reconstruction using

HM. (h) and (k) Reconstruction using DORT-CGM. (i) and (l) Reconstruction using DORT-HM.

243101-6 Zhang et al. J. Appl. Phys. 120, 243101 (2016)



One interest of the DORT procedure is that it provides

an initial estimate that is significantly better than that given

by the backpropagation technique. Although some high order

singular vectors have been known to backpropagate outside

the support of the object, the weighting of the backpropa-

gated DORT fields with their associated singular values

ensures the dominance of the singular vectors that are the

least sensitive to noise. Now the latter are usually producing

field maps that are confined in the target volume. When the

objects are small compared to the wavelength, backpropaga-

tion and DORT intensity maps are basically equivalent as

shown in Ref. 37 and observed in Fig. 4. On the other hand,

when the target size is comparable to or larger than the

wavelength as in case C, the DORT guess is clearly better

than the backpropagation guess and even retrieves the shape

of the target. These results suggest that the DORT intensity

map could even be used alone, as a cheap direct inversion

scheme.

In addition, introducing the DORT procedure in

the inversion algorithm decreases the influence of the

noisy data via the weighting of the cost functional, and

it limits the search directions of the optimization

process to the target support via the use of focusing

illuminations.

Another advantage of the DORT procedure is that it per-

mits a significant decrease of the computation time, as can

FIG. 5. Cut of the reconstructed permittivity of the target B (two spheres in contact), displayed in Fig. 2(b) using different inversion schemes. (a)–(c) and

(g)–(i): in the (x, y) plane at z¼ 0 cm. (d)–(f) and (g)–(l): in the (x, y) plane at z¼�1.25 cm. (a) and (d) Permittivity obtained by the classical backpropagation

procedure. (g) and (j) Permittivity obtained with DORT. (b) and (e) Reconstruction using CGM. (c) and (f) Reconstruction using HM. (h) and (k)

Reconstruction using DORT-CGM. (i) and (l) Reconstruction result using DORT-HM.
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be seen in Table II. This comes from the fact that the compu-

tational burden is directly proportional to the number of illu-

minations and that the DORT illuminations with the weakest

singular values have been discarded in the inversion process.

It is worth recalling at this point that because of the weight-

ing of the DORT illuminations with their associated singular

values, discarding the weakest illuminations has quasi no

impact on the reconstructions. By contrast, keeping the dom-

inant illuminations without any weighting yields signifi-

cantly deteriorated reconstructions (not shown). Thus, the

truncation of the singular vector matrix is interesting for

accelerating the inversion, but the weighting is mandatory

for improving the reconstructions.

Lastly, we have conducted a rapid study on the noise

sensibility of the DORT inversion schemes by adding numer-

ical white noise with increasing magnitude to the experimen-

tal data of Target A. It was observed that the first singular

value increased with noise, reinforcing the dominance of the

first DORT vector over the others in the weighted inversion

procedure. The first singular vector conveying essentially

information on the target low frequencies, the resolution was

deteriorated but the reconstruction remained stable.

FIG. 6. Cut of the reconstructed permittivity of the target C displayed in Fig. 2(c) using different inversion schemes. (a)–(c) and (g)–(i): in the (x, y) plane at

z¼ 0 cm. (d)–(f) and (g)–(l): in the (x, z) plane at y¼ 0 cm. (a) and (d) Permittivity map obtained by the classical backpropagation procedure. (g) and (j)

Permittivity map obtained with DORT. (b) and (e) Reconstruction using CGM. (c) and (f) Reconstruction using HM. (h) and (k) Reconstruction using DORT-

CGM. (i) and (l) Reconstruction using DORT-HM.
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V. CONCLUSION

In an imaging experiment, the illuminations are not nec-

essarily adapted to the target under observation. From the

Singular Value Decomposition of the scattering matrix, it is

possible to synthesize incident fields, named DORT fields,

that focus preferentially on the target. We show that replac-

ing the initial illuminations by the DORT fields in the inver-

sion schemes yields a significant amelioration of the

reconstructions together with a decrease in the computation

time. The interest of DORT preprocessing is particularly evi-

dent when the target size is comparable or larger than the

imaging wavelength and when non-linearized inversion

schemes are used. Hence, in addition to the well known

interest of DORT illuminations for focusing on small targets

in a cluttered environment, DORT preprocessing is also

most useful for imaging large targets using non-linearized

inversion tools.
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