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In this paper, we consider the imaging of targets with a multi-frequency microwave
experiment and investigate the best way to take advantage of the frequency-diversity
data for reconstructing the three-dimensional permittivity of the objects from the
scattered field data. We derive two inversion procedures where the permittivity is esti-
mated iteratively so as to minimize an adequate cost functional. In the first approach,
known as the frequency hopping procedure, the inversion scheme is run on a single
frequency dataset, starting from the lowest frequency, and its final result is used as an
initial guess for the inversion performed on the next frequency dataset. In the second
approach, the inversion procedure is applied to the full multi-frequency data. We
show on various targets taken from the Fresnel database, that the best reconstructions
are obtained when the inversion procedure acts on the full data. The reconstruction
can be further ameliorated by modifying the weight of the different frequencies in
the cost functional. C 2014 Author(s). All article content, except where otherwise
noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1063/1.4904898]

I. INTRODUCTION

In many applications, such as geophysical probing1 or medical microwave imaging,2 one aims
at estimating the properties of unknown objects (basically their permittivity distribution) from their
response (scattered fields) to a known electromagnetic illumination. A popular strategy yielding
quantitative reconstructions consists in deriving an optimization procedure in which the permittivity
of a given investigation domain is sought iteratively by minimizing a cost functional involving the
measured scattered fields and the simulated fields scattered by the permittivity estimation.3–5

Unfortunately, in many cases, the minimization solver is trapped in a local minimum of the cost
functional, leading to poor or even misleading estimations of the targets. Limited views, non-linear
relationship between the scattered field and the target permittivity due to multiple scattering are the
main reasons, regardless of the noise, for this issue to appear.6–8

One way to overcome these difficulties, without introducing any a priori information on the tar-
gets, is to take advantage of multiple-frequency data.9–11 First, the multifrequency data, by supple-
menting the spatial ones, reduce the appearance of artifacts due to the limited view configuration.11

Second, the good convergence of the minimization procedure at low frequency, when multiple scat-
tering is negligible, can be used to stabilize outside a local minimum the solution obtained at higher
frequency (when multiple scattering is present).9,12 The challenge of multi-frequency inversion is
thus to combine the high resolution theoretically accessible at high frequency with the stability of
the solution obtained at low-frequency and the reduction of limited view artifacts.

Most inversion techniques dealing with multiple frequency data use the frequency hopping
procedure.9,12 It consists in inverting one single frequency dataset at a time, starting from the
lowest one, by using, as initial guess, the final solution obtained with the previous single-frequency
dataset. This approach has been thoroughly checked on two-dimensional synthetic and experimental
data and was recently applied to three-dimensional experimental data. Despite its overall good
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performances, especially when used in conjunction with regularization,13–15 the frequency hopping
procedure may be ineffective or even harmful in configurations where the scattered field noise is
not uniformly distributed over the frequencies. For example, when the target is buried in a cluttered
medium,8 the clutter can significantly deteriorate the inversion solution at some specific frequencies
related to its spatial characteristics. Using this solution as initial guess for the subsequent hopping
procedure, can corrupt dramatically the final result. To avoid this undesirable effect, reconstruction
approaches using the full-frequency data simultaneously seem preferable.16

In this paper, we study the performances of a 3D inversion scheme involving the full-frequency
fully-polarized data, hereafter named Multiple-Frequency inversion method (MF), and compare it to
the Frequency Hopping procedure (FH). Both reconstruction algorithms are checked on the exper-
imental three-dimensional microwave data of the Fresnel database.17 Contrary to most inversion
schemes that have addressed this canonical problem,13–15 our approach is conducted without any
regularization procedure or a priori informations as the aim is to see the peformances of the mutli
frequency procedure wihout be blurred with added informations.

II. STATEMENT OF THE PROBLEM

In this section, we describe the imaging configuration and the method used for simulating the
field scattered by the estimation of the targets. The general geometry of the scattering problem
under study is illustrated in Fig. 1. An unknown three-dimensional object is assumed to be entirely
confined in a bounded box Ω ∈ R3 which defines the investigating domain. The surrounding of
the target is assumed to be homogeneous and non-magnetic, with relative permittivity εb = ε0 and
permeability µ = µ0 (ε0 and µ0 being the permittivity and permeability of vacuum, respectively).
The investigating domain is illuminated successively by l = 1, . . . ,L electromagnetic excitation
Einc
l,p

, for p = 1, . . . ,P operating frequencies f p. For each excitation l and operating frequency p
the scattered fields f mes

l,p
are measured on a surface Γ located outside the investigating domain. The

inverse problem is stated as finding the relative permittivity distribution ε(r) of the unknown object
from the knowledge of the scattered data f mes

l,p
.

The total field insideΩ and the scattered field observed by the receivers can be represented as,

El,p(r)(r,r′ ∈ Ω) = Einc
l,p(r)

+


Ω

GΩp(r,r′)χ(r′)El,p(r′)dr′, (1)

Esca
l,p(r)(r′ ∈ Ω,r ∈ Γ) =


Ω

GΓp(r,r′)χ(r′)El,p(r′)dr′, (2)

where χ(r′) denotes the permittivity contrast which is assumed to be frequency independent, i.e. the
constitutive material of both targets under test and the background medium are non-dispersive

χ(r′) = ε(r′) − 1. (3)

Equation (1), noted as the state or coupling equation also sometimes referred as the near-field
equation, permits to calculate the total field El,p at the position r of the investigating domain Ω.
Kernels GΩp and GΓp, related to the Green tensor of the homogeneous background medium, describe
the field relationship from L3(Ω) to L3(Ω) and from L3(Ω) to L3(Γ), respectively. Once the total field
inside the scattering domain is obtained, the scattered field Esca

l,p
is calculated from the observation

equation, Eq. (2). The forward scattering problem is solved numerically using the coupled dipole
method (CDM) which was introduced by Purcell and Pennypacker in 1973.18

III. INVERSE SCATTERING PROBLEM

In this section we sketch the hybrid inversion technique that has been used to retrieve the target
relative permittivity from a single frequency dataset19,20 and we show how it can be adapted to deal
with multi-frequency data.21
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FIG. 1. Geometry of the scattering problem. The scatterers are confined in the scattering domain Ω. The scattered field is
measured on the measurement surface Γ.

A. Single-frequency and multi-sources inversion procedure

We consider the imaging of targets supporting moderate multiple scattering. In other words, the
field inside the investigation domain can not be approximated by the incident field. The inversion
algorithms able to tackle this issue can be classified in two kinds: the linearized methods in which
the total field at each iteration step is fixed to the value obtained with the previous estimation of the
permittivity distribution22–24 and the non-linearized methods in which the total field is minimized
together with the sought permittivity.25,26 In this work, we consider the Hybrid method (HM) which
combines the rapidity of the linearized approach and the robustness to noise of the non-linearized
ones.20

At each iteration step n the permittivity distribution and the total field inside the investigating
domain are updated by minimizing the cost functional

Fn(χn,E1,n, . . . ,EL,n) = Fn(χn,E�,n)

= WΓ
L
l=1

∥h(2)
l,n
∥2
Γ +WΩ

L
l=1

∥h(1)
l,n
∥2
Ω, (4)

where normalizing coefficients are defined as

WΩ =
1

L
l=1

∥Einc
l ∥2
Ω

, and WΓ =
1

L
l=1

∥f mes
l ∥2

Γ

. (5)

The subscripts Ω and Γ are included in the norm ∥.∥ and later in the inner product ⟨., .⟩ to indicate
the domain of integration. h(1)

l,n
and h(2)

l,n
are residual errors computed from the near-field equation
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Eq. (1) and the observation equation Eq. (2), respectively.

h(1)
l,n
(r ∈ Ω) = El,n(r) − Einc

l (r)
−

Ω

GΩ(r,r′)χn(r′)El,n(r′)dr′, (6)

h(2)
l,n
(r ∈ Γ) = f mes

l (r) −

Ω

GΓ(r,r′)χn(r′)El,n(r′)dr′. (7)

More details on this inversion technique can be found in Ref. 7.

B. Multiple-frequency and multi-sources inversion procedure

When multiple-frequency data are accessible, a popular strategy consists in using the frequency
hopping method.9,27 The inverse problem is solved sequentially on single frequency dataset from
the low to the high frequencies. At each sequence, the initial estimate of the contrast distribution is
given by the final result obtained at the previous sequence. For the lowest frequency inversion the
initial estimate can be obtained thanks to the back-propagation procedure. Thus, P iterative single
frequency inversion are achieved corresponding to the P frequency harmonic data.

Another possibility is to derive and minimize a cost functional involving the entire data. This
approach, hereafter named the multiple-frequency inversion method, can be used as an alternative
strategy to the frequency hopping procedure. For the sake of simplicity, the near-field and the
observation equations Eqs. (1)-(2) are rewritten using symbolic notation,

El,p = Einc
l,p + GΩp χEl,p, (8)

Esca
l,p = GΓp χEl,p.

where p = 1, . . . ,P corresponds to the frequencies. In the multiple-frequency inversion the mini-
mized cost functional at each iteration step is defined as

Fn(χn,E·, ·,n) =WΓ
L
l=1

P
p=1

∥h(2)
l,p,n

∥2
Γ

+WΩ
L
l=1

P
p=1

∥h(1)
l,p,n

∥2
Ω, (9)

where normalizing coefficients are given by

WΩ =
1

L
l=1

P
p=1

∥Einc
l,p∥2

Ω

,and WΓ =
1

L
l=1

P
p=1

∥f mes
l,p ∥2

Γ

. (10)

Hence all the frequencies are involved in the cost function. The functions h(1)
l,p,n

and h(2)
l,p,n

are two
residual errors defined as previously in Eqs. (6) and (7), i.e., the first one is the residual error with
respect to the incident field in the investigating domain computed from Eq. (1) and the second
residual error is the error on the scattered field computed from Eq. (2).

h(1)
l,p,n
= El,p,n − Einc

l,p − GΩp χnEl,p,n, (11)

h(2)
l,p,n
= f mes

l,p − GΓp χnEl,p,n. (12)

Two sequences related to the contrast and total field inside the investigating domain, χn and El,p,n,
respectively, are built up according to the following recursive relations

El,p,n = El,p,n−1 + κl,p,n;ννl,p,n + κl,p,n;ωωl,p,n, (13)
χn = χn−1 + βndn, (14)
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where νl,p,n, ωl,p,n and dn are updating directions with respect to the total field El,p,n and the
contrast χn, respectively, and κl,p,n, βn are scalar coefficients. The updating directions νl,p,n and dn

are chosen as the standard Polak-Ribière conjugate-gradient directions,28 while ωl,p,n is given by

ωl,p,n = Ẽl,p,n−1 − El,p,n−1 with (15)

Ẽl,p,n−1 = [I − GΩp χn−1]−1Einc
l,p, (16)

where Ẽl,p,n−1 represents the total field inside the investigating domain Ω, calculated from Eq. (1)
with contrast χn−1. The scalar weight κl,p,n and βn are chosen at each iteration step n so as to
minimize the normalized cost functional mentioned in Eq. (9)

We propose to use the a priori information that the real and imaginary parts of the relative com-
plex permittivity are greater than unity and non-negative, respectively. Instead of retrieving a complex
function χn, two real auxiliary functions ξn and ηn are reconstructed such that

χn = ξ2
n + jη2

n, (17)

the recursive relation with respect to contrast χn Eq. (14) becomes

ξn = ξn−1 + βn;ξdn;ξ and ηn = ηn−1 + βn;ηdn;η. (18)

As updating directions dn;ξ and dn;η, the authors take

dn;ξ = gn;ξ + γn;ξdn−1;ξ,γn;ξ =



gn;ξ, gn;ξ − gn−1;ξ

�
Ω

∥gn−1;ξ∥2
Ω

, (19)

dn;η = gn;η + γn;ηdn−1;η,γn;η =



gn;η, gn;η − gn−1;η

�
Ω

∥gn−1;η∥2
Ω

, (20)

where gξ and gη are the gradients of the cost functional F (ξ,η,E·, ·,n) with respect to ξ and η respec-
tively, evaluated at the (n − 1)-th step, assuming that the total field inside the investigating domain
does not change. These gradients are given by

gn;ξ = 2ξn−1Re

WΩ

N
l=1

P
p=1

Ēl,p,n−1(GΩp)†h(1)
l,p,n−1

−WΓ
N
l=1

P
p=1

Ēl,p,n−1(GΓp)†h(2)
l,p,n−1


, (21)

gn;η = 2ηn−1Im

WΩ

N
l=1

P
p=1

Ēl,p,n−1(GΩp)†h(1)
l,p,n−1

−WΓ
N
l=1

P
p=1

Ēl,p,n−1(GΓp)†h(2)
l,p,n−1


, (22)

where the over bar denotes the complex conjugate, and (GΩp)† and (GΓp)† are the adjoint operators of
GΩp and GΓp, respectively.

The search directions νl,p,n for the total field inside the test domain is similar to those chosen for
the contrast functions ξ and η:

νl,p,n = gl,p,n;El,p
+ γl,p,n;El,p

νl,p,n−1, (23)

γl,p,n;El,p
=


gl,p,n;El,p

,gl,p,n;El,p
− gl,p,n−1;El,p


Ω

∥gl,p,n−1;El,p
∥2
Ω

, (24)
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where gl,p,n;El,p
is the gradient of the cost functional F (ξ,η,El,p,n) with respect to the field El,p,

evaluated at the (n − 1)-th step, assuming that ξ and η does not change:

gl,p,n;El,p
=WΩ


h(1)
l,p,n−1 − χ̄n−1(GΩp)†h(1)

l,p,n−1



−WΓ χ̄n−1(GΓp)†h(2)
l,p,n−1. (25)

For the multiple-frequency measured data, we have L × P updating directions ωl,p,n and νl,p,n. The
cost function Fn is a nonlinear expression with respect to 2 × L × P complex unknown (κl,p,n;ν,
κl,p,n;ω) and two real unknown (βn;ξ, βn;η).

We now compare the performance of the frequency hopping procedure and the multiple-frequency
inversion scheme on the experimental microwave data of the Fresnel database.

IV. EXPERIMENTAL RESULTS

We considered several targets supporting more or less multiple scattering and two imaging config-
urations, one being almost complete (i.e. the illumination and observation are performed all around
the target) and the other one being significantly incomplete (the illumination and observation are
performed on one side of the target only).

A. Geometry of the targets under test

Four different targets picked up from the Fresnel database are considered, see Figs. 2(a)-2(d). The
first three targets are made of two dielectric cubes of side size a = 2.5 cm and permittivity ε = 2.4.
The fourth one, Fig. 2(d), is made of two dielectric spheres in contact with relative permittivity ε = 2.6
and of radius r = 2.5 cm. Hereafter, the targets illustrated in Fig. 2(a), Fig. 2(b), Fig. 2(c) and Fig. 2(d)

FIG. 2. (a) Two dielectric cubes of relative permittivity ε = 2.4, side a = 2.5 cm the centers of which are located at
(a/2, a/2, a/2) and (a/2, a/2, 5a/2). (b) Same as (a) but the centers are located at (−a/2, a/2, a/2) and (a/2, −a/2, a/2).
(c) same as (a) but the centers are located at (a/2, −a/2, 3a/2) and (a/2, 3a/2, 3a/2). (d) Two dielectric spheres in contact
of relative permittivity ε = 2.6, radius r = 2.5 cm with centers located at (−r, 0, 0) and (r, 0, 0).

 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported license. See:

http://creativecommons.org/licenses/by/3.0/ Downloaded to IP:  194.167.230.227 On: Fri, 19 Dec 2014 14:48:00



127135-7 Zhang et al. AIP Advances 4, 127135 (2014)

are referred to target or object (A), (B), (C) and (D), respectively. In all the reconstructions, the targets
are assumed to be confined in a bounded box Ω of volume size 12.5 × 12.5 × 12.5 cm3. The mesh
size of the discretization of Ω is taken equal to d = 0.5 cm whatever the operating frequency. At the
central frequency f0 = 5.5 GHz, the lattice size is about λ0/10 which is small enough to provide an
accurate solution of the forward scattering problem. Adapting the mesh size to the frequency would
be an interesting option for diminishing the calculation time of the FH but is expected to have a
marginal influence on the final reconstructions. In all the examples, sole the estimated real part of the
permittivity is discussed, the imaginary part being always very small. To quantify the accuracy of the
reconstruction, we define a contrast reconstruction error as,

Errχ =
∥ χactual − χrec∥2

Ω

∥ χactual∥2
Ω

, (26)

where χactual is the permittivity contrast of the actual target while χrec is the reconstructed one.
For both the FH and MF procedures, the iteration stops automatically when the variation of the

cost functional residue is less than 0.01%, which means that the cost function has reached a plateau.

B. Imaging configuration

The experimental setup, depicted in Fig. 3, is described in detail in Ref. 29. The incident wave,
radiated by a parabolic antenna, can be modeled by a linearly polarized plane wave propagating in
the (x, y) plane with θinc ranging from 0◦ to 350◦ by step 10◦ (green line). The illumination frequency
varies from 3 GHz up to 8 GHz, by step of 0.25 GHz. The detection angle θsca varies from 0◦ up to
320◦ by step 40◦ while φsca varies from 30◦ up to 150◦ by step 15◦ (red line).

In the complete configuration, the vectorial scattered fields, defined as the difference between the
total field and the incident field,30 are obtained at 81 different positions on a sphere surrounding the
target for 36 angles of incidence regularly distributed along 2π in the x, y plane. In the incomplete

FIG. 3. Sketch of the experimental setup.17 The illumination is performed in the (x, y) plane with θinc varying from 0◦ to
350◦ step 10◦ (green line). The observation angles θdiff varies from 0◦ to 320◦ step 40◦ and φdiff from 30◦ to 150◦ step 15◦

(red line).
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TABLE I. Errr quantifies the noise corrupting the experimental data for each target and imaging configuration.

Target (A) Target (B) Target (C) Target (D)

Errr complete 9.6% 10.2% 8.2% 9.6%
Errr incomplete 7% 13.3% 6.5% 8.5%

configuration, we consider a subset of these data corresponding to a single illumination with θinc = 0◦

and a detection in transmission at angles 90◦ < θsca < 270◦.
The total noise of the experimental dataset in the complete and incomplete configuration is esti-

mated with Errr = WΓ
L
l=1

P
p=1

∥h(2)
l,p

∥2
Γ

where the simulated scattered field is obtained with the actual

shape of the targets, see Table I. It is observed that the data are corrupted in the same way whatever
the targets and configurations. A more precise analysis, not shown, indicates that the noise increases
with the frequency and affects more the cross-polarized terms than the co-polarized ones.17

C. Comparison of the frequency hopping procedure
with the multiple-frequency approach
1. Complete configuration

In this section are reported the reconstructions of the four targets using the frequency hopping
(FH) approach and the multiple-frequency (MF) inversion method using the complete data. The recon-
structions with both FH and MF techniques of the targets (A,B,C) are displayed in Fig. 4, Fig. 5, Fig. 6
respectively. Both techniques yield satisfactory results, the Frequency Hopping approach yielding
slightly more artifacts.

The target (D), see Fig. 2(d), is more difficult to reconstruct than the targets (A,B,C) because the
dimension of the object is larger than the wavelength at the central illumination frequency
f0 = 5.5 GHz. The results of the FH and MF reconstructions using the complete data are presented
in Figs. 7(a)-7(b) and in Figs. 7(c)-7(d), respectively. In this case, we observe a marked superiority of
the MF reconstruction as compared to the FH one especially at the contact point between the spheres.
In this case, multiple scattering is important at high frequency and the stability brought about by the
low frequency data is a strong asset of MF.

FIG. 4. Reconstructed permittivity of target (A) presented in Fig. 2(a), in the complete configuration. (a)-(c) frequency-
hopping method. (d)-(f) multiple-frequency method. (a) and (d) (x, y) plane at z = 1.25 cm. (b) and (e) (x, z) plane at
y = 1.25 cm. (c) and (f) (y, z) plane at x = 1.25 cm. The reconstructions are similar.
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FIG. 5. Reconstructed permittivity of target (B), see Fig. 2(b), under the complete configuration. (a)-(c) frequency-hopping
method. (d)-(f) multiple-frequency method. (a) and (d) (x, y) plane at z = 1.25 cm. (b) and (e) (x, z) plane at y = −1.25 cm.
(c) and (f) (y, z) plane at x = 1.25 cm. The reconstructions are similar.

FIG. 6. Reconstructed permittivity of target (C), see Fig. 2 (c), under the complete configuration, (a)-(c): frequency-hopping
method. (d)-(f): multiple-frequency method.(a) and (d) (x, y) plane at z = 3.75 cm. (b) and (e) (x, z) plane at y = 3.75 cm.
(c) and (f) (y, z) plane at x = 1.25 cm. The reconstructions remain similar.

2. Incomplete configuration

We now consider the performances of FH and MF in the limited view configuration. In this case,
there is only one illumination (instead of 81 in the complete configuration).

The reconstructions of targets (A,B,C) using both FH and MF are shown in Fig. 8, Fig. 9, Fig. 10
respectively. In all these examples, the MF reconstructions are significantly better than the FH ones.
The latter are deteriorated by artifacts and over estimations of the permittivity contrast while the
former remain close to that obtained in the complete configuration.

On the other hand, the reconstruction of the large target D failed with both the FH and MF
methods (not shown). In this case, whatever the methods, the small number of data is not sufficient
for estimating properly the large number of ‘active’ (i.e. non zero) target unknowns. Such a problem
cannot be solved without any regularization.
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FIG. 7. Reconstructed permittivity of target (D), see Fig. 2 (d), under the complete configuration, in the (x, y) plane (a) and
(c) for z = 0 cm, (b) and (d) for z = −2 cm. (a) and (b) frequency-hopping method. (c) and (d) multiple-frequency method.
The multiple-frequency method reconstructs better the contact point between the spheres.

FIG. 8. Same as Fig. 4, in the incomplete configuration.

D. Weighted multiple-frequency inversion procedure

Basically, in multiple frequency imaging, the low frequency data ensures the stability of the
reconstruction but provides low resolution images while the high frequency data brings high reso-
lution but may prevent the convergence of the algorithm. In this paragraph we try to ameliorate the
Multiple Frequency scheme by balancing the contributions of low and high frequencies. In presence
of strong multiple scattering (for objects large with respect to the central frequency), it may be advan-
tageous to increase the weight of the low frequency data for ameliorating the reconstruction. The
layout of the Weighted Multiple Frequency (WMF) inversion method is the same as that of the MF
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FIG. 9. Same as Fig. 5 in the incomplete data configuration.

FIG. 10. Same as Fig. 6, while under the incomplete data configuration.

method, sole the cost functional is modified and reads,16 F̃(χ,E·, ·)

F̃(χ,E·, ·) = W̃Γ
L
l=1

P
p=1

1
f αp

∥h(2)
l,p

∥2
Γ

+ W̃Ω
L
l=1

P
p=1

1
f αp

∥h(1)
l,p

∥2
Ω. (27)

Two normalizing coefficients are defined as

W̃Ω =
1

L
l=1

P
p=1

1
f αp

∥Einc
l,p∥2

Ω

, (28)
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FIG. 11. Same as Fig. 7, with the weighted multi-frequency approach, α=3.

TABLE II. Errχ for for different targets and for different inversion methods, under the complete configuration and the
incomplete configuration. SFC: single frequency at 8 GHz under the complete configuration. SFIC: single frequency at
8 GHz under the incomplete configuration. FHC: frequency-hopping approach under the complete configuration. MFC:
multiple-frequency approach under the complete configuration. FHIC: frequency-hopping approach under the incomplete
configuration. MFIC: multiple-frequency approach under the incomplete configuration.

Errχ Target (A) Target (B) Target (C) Target (D)

SFC 31% 37% 25% 87%
SFIC 91% 93% 96% –
FHC 53% 34% 50% 76%
MFC 29% 34% 14% 44%
FHIC 354% 141% 240% –
MFIC 48% 47% 38% –

W̃Γ =
1

L
l=1

P
p=1

1
f αp

∥f mes
l,p ∥2

Γ

, (29)

Gradients with respect to ξ, η and El,p read as

g̃ξ = −2Re

W̃Γ

P
p=1

1
f αp

L
l=1

Ēl,p(GΓp)†h(2)
l,p

− W̃Ω
P

p=1

1
f αp

L
l=1

Ēl,p(GΩp)†h(1)
l,p


, (30)

g̃η = −2Im

W̃Γ

P
p=1

1
f αp

L
l=1

Ēl,p(GΓp)†h(2)
l,p

− W̃Ω
P

p=1

1
f αp

N
l=1

Ēl,p(GΩp)†h(1)
l,p


, (31)

g̃El,p
= −W̃Γ

f αp
χ̄(GΓp)†h(2)

l,p

+
W̃Ω
f αp

(
χ̄(GΩp)†h(1)

l,p
− h(1)

l,p

)
. (32)
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We have tried different α (from one to three) with the effect of continuously reducing the role of
the high frequency data in the cost functional. For targets (A), (B) and (C) the reconstructions were
already satisfactory with α = 1 (due to the small size of the objects) and were made a smoother with
increasing α. On the other hand, for target (D) which is large compared to the wavelength, we found
that taking α = 3 ameliorated significantly the quality of the reconstruction with a reconstruction error
Errχ=21%. Compared to Fig. 7, with Errχ=44%), the reconstructed permittivity distribution, Fig. 11
is almost homogeneous and the target shape is now retrieved. This example shows the possibility
given by the Multiple Frequency method and the interest of weighting differently the high and low
frequency data.

V. DISCUSSION AND CONCLUSION

To summarize our results, we report in Table II the error on the reconstructions, Errχ, for all
the targets, imaging configurations and inversion techniques. In addition, we indicate the reconstruc-
tion errors obtained with a single set of data obtained at the highest frequency 8 GHz. Hereafter,
the single frequency reconstruction is called SF. We empharize that all reconstructed results shown
here are achieved without any regularization procedure. We observe that, whatever the targets and the
imaging configurations, the frequency hopping reconstructions are not better (and even worse) than
the reconstructions obtained with the highest frequency dataset except for the target D of larger size.
This results points out the difficulty in using the frequency hopping procedure. A single corrupted
dataset at an intermediate frequency being sufficient for trapping the technique in a local minimum,
the FH is quite vulnerable to noise. On the other hand, the MF procedure is always better than the
SF or FH techniques. It yields remarkably similar reconstructions when changing from the complete
to the incomplete configuration. We recall that the incomplete configuration is performed with only
one illumination, 36 observations (in transmission), and 21 frequencies, i. e. 81 times fewer data than
in the complete configuration and the time required for the inversion is divided by thirty. This result
stresses the robustness of MF to noise and its interest when dealing with objects that are larger than the
central illumination wavelength. Finally, note that the computation times of the MH and FH are about
the same (the MF time is two times larger than the FH one in the complete configuration but is smaller
than the FH one in the incomplete configuration). However, the MF method requires more memory
than the FH as the measured data at all frequencies are minimized together. In view of this study, we
believe that accounting for all the frequencies simultaneously in the inversion procedure should be
generally preferred to the frequency hopping technique when dealing with multiple frequency data.

Another advantage of the multifrequency approach is the possibility to weight differently the
data at high and low frequencies. For targets large compared to the central wavelength, decreasing the
weight of the high frequencies ameliorates significantly the quality of the reconstruction. This impor-
tant point can provide acceptable reconstructions even in an incomplete configuration and without
any regularization. We believe that for the next step, including the regularization procedure13–15 into
this multifrequency approach should be considerable for some more complicated configurations i.e.,
metallic targets of special shapes, in order to enhance the obtained reconstruction.
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