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ABSTRACT
In optical or microwave computational tomography, the sample permittivity is reconstructed
numerically from the measurements of its scattered field for various illuminations. When the light
sample interaction involves multiple scattering, the relationship between the scattered field and
the permittivity is non-linear and a direct reconstruction is not possible. Using a simple physical
approach, adapted to the three-dimensional vectorial electromagnetic framework, we derive an
iterative inversion technique, based on the linearization of the scattering operator, for imaging
(possibly anisotropic) targets in the multiple scattering regime. We investigate the performances
of different approximations of this operator accounting for more or less multiple scattering. Our
method is applied to the reconstruction of targets in the microwave domain using experimental
data.
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1. Introduction

Fostered by the continuous improvement of computer
capacity, the last 20 years have seen the rise of
computational electromagnetic imaging, first in the mi-
crowave domain and more recently in optics. This imag-
ing approach is based on an accuratemodelling of the link
between the recorded field and the sample permittivity
and the use of an inverse technique for reconstructing
the sample from the data. When the sample is weakly
contrasted, the measurements are usually assumed to be
linearly linked to the sample permittivity and standard
direct or iterative linear inverse methods are applied to
the data. When the sample supports multiple scattering,
the recorded field is nomore linearly linked to the sought
sample permittivity distribution and the reconstruction
procedure must grope its way towards a solution. The
classical technique, which belongs to the linearized in-
version schemes (1), consists in estimating iteratively the
sample permittivity so as to minimize the distance (or
cost functional) between the data and the field simu-
lated for a given sample estimation. In most cases, the
minimization is performed using a gradient technique.
Now the derivation of the gradient of the cost functional
with respect to the permittivity is not straightforward
when multiple scattering is present. In practice, only
a few studies have addressed the issue in the case of
3D electromagnetic imaging. Expressions obtained from
the Lagrangian approach (2) or from a direct derivation
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of the cost functional (3–6) have thus been proposed
but the complexity of their formulations hinders their
comparison.

In this paper, we present a simple physic-based tech-
nique to derive the gradient in the complex configuration
of 3D vectorial electromagnetic imaging of anisotropic
targets. A similar approach has been used, in acoustic
imaging, to provide an expression that is equivalent to
that given by the Lagrangian multiplier or the direct
derivation (7). The easyphysical interpretationof the gra-
dient permits to investigate several approximations ac-
counting for more or less multiple scattering that are nu-
merically more tractable. The performance of the differ-
ent approximations in a standard conjugate-gradient in-
version scheme are analysed on experimental microwave
data.

2. The inverse problem context

We consider a target defined by its permittivity distribu-
tion ε. To be as general as possible, the target permittivity
may be anisotropic as long as it is reciprocal. In other
words, ε is a tensor satisfying tε = ε, where tε is the
transpose of the tensor ε. The imaging problem consists
in estimating ε in a domain under investigation � from
the measurements M of the electromagnetic field taken
for various observation and source positions (o, s) ∈ �.
We call E[ε](o, s) the model of the recorded data, for a

© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/09500340.2018.1459912&domain=pdf


1788 K. UNGER ET AL.

given observation and illumination pair, which depends
on ε. The inverse problem consists in finding ε such that,

M = E[ε]. (1)

The Maxwell equations that describe the interaction
between an electromagneticwave and an inhomogeneous
medium yield a forward model E(ε) which is generally
nonlinear with respect to ε. In this case, the estimation of
ε satisfying Equation (1) is not straightforward. The sim-
plest approach froma conceptual point of view consists in
minimizing iteratively the error M − E(ε) by modifying
the permittivity ε with a small perturbation δε, using

E[ε + δε] − E[ε] = D[δε] + o(δε), (2)

where D is a linear operator (known as the Fréchet op-
erator) which transforms an �-tensor into a �-function.
For each iteration step, the estimation of δε minimizing
M − E[ε] − D[δε] is obtained with a standard linear
inversion scheme (8). This technique is very expensive
numerically and more tractable methods in which δε is
sought along a particular direction u are often preferred.
In these approaches, δε is written as δε = αu and the
scalar α only is optimized. The search direction u is
usually built from the gradient of a cost functional F(ε)

representing the distance between the data and themodel
with respect to ε. To define this distance, one introduces
an inner product on �,

〈
e, f

〉
�

=
∑

(o,s)∈�

e∗(o, s)f (o, s), (3)

where a∗ stands for the conjugate of a, so thatF(ε) reads,

F(ε) ∝ ‖M − E[ε]‖2� = ‖h‖2� , (4)

where h(o, s) = M(o, s)−E[ε](o, s) denotes the residual
error computed fromEquation (1). Recalling that the gra-
dient g is the vector u in� that maximizes the directional
derivative

lim
t→0

F(ε + tu) − F(ε)

t
, (5)

one easily finds that

g = −D†[h], (6)

where the adjoint operatorD† is defined as,
〈D†[e], η〉

�
=

〈e,D[η]〉� , with the Frobenius inner product over �

〈
e, f

〉
�

=
∫

�

e∗(r) : f (r)dr, (7)

where a : b = ∑
ij aijbij in an orthogonal basis represen-

tation.

The Fréchet operator, which linearizes the scattering
problem, is thus a key issue of most inversion schemes.
In the following, we derive its expression in the general
framework of electromagnetic scattering by anisotropic
inhomogeneous media.

3. Derivation of the Fréchet operator

We consider an imaging configuration where the target
is illuminated by a monochromatic dipole antenna ps
located at the position s and the recordeddata correspond
to the electric field observed at the observation point o
projected onto the observation dipole antenna po. We
start froma reference inhomogeneousmediumdescribed
by its reciprocal permittivity tensor ε. We call Eε(r, s)
the electric field observed at r in the reference medium,
radiated by a monochromatic dipole ps located at the
position s andG the monochromatic Green tensor of the
medium. By definition, Eε(r, s) = G(r, s)ps. We now
introduce a permittivity fluctuation δε in the domain
under investigation �. According to the volume inte-
gral equation stemming fromMaxwell equations (9), the
field in the perturbed medium created by the source ps,
Eε+δε(r, s), can be written as the field in the reference
medium Eε(r, s) plus the field radiated by the induced
sources δεEε+δε ,

Eε+δε(r, s) = Eε(r, s)

+
∫

�

G(r, r′)δε(r′)Eε+δε(r′, s)dr′. (8)

Taking r = o ∈ � and projecting the field on the
observation antenna po yield the data model,

E[ε + δε](o, s) = E[ε](o, s)
+

∫
�
po · G(o, r)δε(r)Eε+δε(r, s)dr. (9)

The reciprocity theorem (10), valid in a reciprocal
inhomogeneous medium, u ·G(ru, rv)v = v ·G(rv , ru)u,
permits to rewrite Equation (9) as,

E[ε + δε](o, s) − E[ε](o, s)
=

∫
�

δε(r)Eε+δε(r, s) · Eε(r, o)dr, (10)

whereEε(r, o) = G(r, o)po is the field observed at r in the
referencemedium generated by the antenna po located at
the position o. Subtracting Equation (8) in the right-hand
term of Equation (10), one can build a series in all orders
of δε whose first term yields the Fréchet operator (and
the second term is the Hessian),
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D[δε](o, s) =
∫

�

δε(r)Eε(r, s) · Eε(r, o)dr,

D(o, s, r)δε(r) = [
Eε(r, o) ⊗ Eε(r, s)

] : δε(r). (11)

Equation (11) shows that the estimation of the Fréchet
operator and the related gradient requires only the cal-
culation of two fields in the reference medium, one gen-
erated by an emitter located at the source position s and
one generated by an emitter located at the observation
position o.

4. Reconstruction of targets

To compare our formulation to the gradients given in
the literature, we consider an imaging problem in which
the targets are made of isotropic materials (the sought
permittivity is a scalar) and the source and observation
antennas (ps, po)belong tofixed independent domains�s
and �o with Ns and No points, respectively. In this case,
the Fréchet operator transforming a function of r ∈ �

in a function of (o, s) ∈ � reads, D(o, s, r) = Eε(r, s) ·
Eε(r, o) and the gradient given by Equation (6) reads,

g(r) = −
∑
s∈�s

E∗
ε(r, s) ·

⎡
⎣∑
o∈�o

E∗
ε(r, o)h(o, s)

⎤
⎦ . (12)

The expression 12 is similar to that obtained with the
Lagrange multiplier (2). It is the dot product of two near-
fields in the medium of permittivity ε, one stemming
from the emitter ps and one stemming from a source lo-
cated at the observation points, Ss(r) = ∑

o∈�o
h(o, s)po

δ(r − o). These 2Ns electric fields can be computed with
anyMaxwell equation solver (9). Yet, if the domain under
investigation is large, this rigorous calculation can be
time consuming and the use of approximate models for
estimating the fields in Equations (12) and (4) (Born
(11), Rytov (12), Beam Propagation Method (13) among
others) may be interesting.

In the following,we investigate the performance of dif-
ferent gradient approximations in a standard conjugate
gradient inversion scheme (3) applied to the reconstruc-
tion of targets in the microwave domain.

For an arbitrary permittivity ε(r), the fieldE(r) is com-
puted at any position r of the domain under investigation
� with the method of moments (14, 15) which consists
in discretizing Equation (8); � is split into elemental
units little enough so that the Green function G, the
permittivity ε and the field E can be assumed constants
inside each unit: the computation of the field is reduced
to the resolution of a linear system with the value of the
field at the different units as unknowns. Many standard
linear solvers exists and we use a biconjugate gradient

method to compute quickly and with accuracy the field
(16).

The algorithm implemented in this study minimizes
the distance

F(ε) =
∑

l ‖Emes
l − Ed

l (ε)‖2�o∑
l ‖Emes

l ‖2
�o

, (13)

between the measured detected field Emes and the de-
tected field Ed(ε) that would be computed for a sample of
permittivity ε with the scattering model. The minimiza-
tion is performed thanks to a classical gradient technique
which updates iteratively ε with the relation

εn = εn−1 + αndn, (14)

where dn is the Polak-Ribiére descent

dn = gn + an,εdn−1, (15)

with
an,ε = < gn|gn − gn−1 >�

‖gn−1‖2�
, (16)

and gn is computed with Equation (12); and αn is a real
number which minimizes the cost functional F at the
next iteration.

Among the various approximations possible to com-
pute the fields in the gradient g(r), we consider only
the Born approximation and the rigorous calculation to
distinguish clearly the two states, accounting thoroughly
or not at all for multiple scattering. In addition, we do
not use any regularization to avoid any bias in the com-
parisons. In all cases, Equation (4) is evaluated using a
rigorous calculation of E[ε].

The first approximation, called Born-Born, consists in
supposing that ε(r)− 1 is small enough for Eε to be close
to the field existing in vacuum Evac. This approximation,
amounts to overlooking any perturbation induced by ε,
and thus any possible multiple scattering in the estima-
tion of the Fréchet operator. The expression of Evac being
analytically, the calculation is quasi-instantaneous.

The second approximation, called Born-Rig, accounts
for some multiple-scattering. It still replaces Eε(r, o) by
Evac(r, o) but it calculates rigorously Eε(r, s). This choice
is dictatedby the fact that a rigorous calculationofEε(o, s)
is anyway necessary for estimating the residue, Equation
(4), and the near-field in �, Eε(r, s), is an easy to get
by-product of this computation. This is particularly true
if one uses a volume integral method (9). This approxi-
mation can be found in several studies (3). From a com-
putational point of view, the Born-Rig approximation,
requires the solving of Ns forward problems at each iter-
ation of the algorithm.



1790 K. UNGER ET AL.

Figure 1. Target reconstructions using three different expressions for the gradient. The units of the figure are in centimeter. (left column)
two cubes with edge a = 2.5 cm and ε = 2.4 at 8 GHz (λ = 3.75 cm); (center column) two touching spheres with radius r = 2.5 cm
and ε = 2.6 at 5 GHz (λ = 6 cm); (right column) a circular-basis cylinder with radius r = 4 cm, height h = 8 cm and ε = 3.05 at 3 GHz
(λ = 10 cm). The (first), (second) and (third line) correspond to the reconstructions with Born-Born, Born-Rig and Rig-Rig gradients,
respectively. The solid line indicates the exact contour of the real object. For each case except Born-Born Cylinder and Born-Rig Cylinder,
the 100th iteration is shown from which the cost functional reaches a plateau. For the cylinder, however, the multiple scattering is so
strong inside the sample that the cost functional diverges after the 5th iteration under the Born-Born approximation and shows a chaotic
evolution under the Born-Rig approximation. The 5th iteration under the Born-Born approximation is shown. The 63th iteration under
the Born-Rig approximation where the cost functional reaches its lowest value is shown. For more details about the convergence of the
cost functional, see Figure 2.

The third evaluation of the gradient, called Rig-Rig,
corresponds to the rigorous calculation and it requires
the solving of 2Ns forward problems at each iteration.

We study the effectiveness of the three approxima-
tions previously described in the reconstruction process
thanks to the Fresnel database. The database provides
experimental scattered fields associated to different tar-
gets with low, moderate and strong multiple scattering.
The imaging configuration is thoroughly described in
Refs. (17–19). Each target of the database is illuminated
by 81 polarized antennas and the complex amplitude of
the scattered field is collected on 36 observation anten-
nas. The antennas are distributed on a sphere of radius
1.796 m with the target at the center. The precise posi-
tions of the source and receiver antennas are described in
Sections 2.3 Sources locations and 2.4 Receiver locations
in Ref. (17). The scattered fields have been measured
at different illuminating frequencies ranging from 3 to

8GHz. The measurements have been performed in an
electromagnetic anechoic chamber and the target po-
sition was far from any dielectric dioptres. With these
experimental precautions, the free space configuration
can be assumed. Among the different targets available, we
choose to study three particular targets. The first target is
composed of two identical cubes (edge 2.5 cm, relative
permittivity 2.4) separated from each other of 2.5 cm
along the z axis. The second target is composed of two
identical balls (radius 2.5 cm, relative permittivity 2.6) in
contact along the x axis. The third target is a cylinder
with a circular basis (height 8 cm, radius 4 cm, relative
permittivity 3.05) oriented along the x axis. The bicube,
the bisphere and the cylinder show increasing scattering
capacities and multiple scattering.

Since the studied targets have been well characterized,
we estimate the quadratic susceptibility error Err(ε) =
‖ε−εtrue‖2�
‖εtrue−1‖2�

between the reconstructedpermittivitywith re-
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Figure 2. Evolution of the cost functional (first line) and of the quadratic susceptibility error ‖ε−εtrue‖2�
‖εtrue−1‖2�

(second line) with respect to

the iterations using three different expressions for the gradient. (left column) two cubes with edge a = 2.5 cm and ε = 2.4 at 8 GHz
(λ = 3.75 cm); (center column) two touching spheres with radius r = 2.5 cm and ε = 2.6 at 5 GHz (λ = 6 cm); (right column) a
circular-basis cylinder with radius r = 4 cm, height h = 8 cm and ε = 3.05 at 3 GHz (λ = 10 cm).

spect to the real target permittivity εtrue (Figure 2).When
the targets are weakly scattering, Figure 1 (left column),
the reconstruction obtained with the Born-Rig or even
the Born-Born approximation is satisfactory (Err(ε) =
40%). When the targets support moderate multiple scat-
tering, Figure 1 (center column), the influence of the dif-
ferent gradient approximations becomes visible : Born-
Rig and Rig-Rig (Err(ε) = 50%) better estimate the
high spatial frequencies of the dimer, especially at the
contact point, than Born-Born (Err(ε) = 200%). When
the object supports strongmultiple scattering as in Figure
1(right column) the Rig-Rig reconstruction (Err(ε) =
40%) is significantly better than the Born-Rig one (Err
(ε) = 100%) while the Born-Born algorithm diverges
after the first iteration.

5. Conclusion

In conclusion, we have given a simple physics-based ap-
proach for deriving an iterative inversion scheme adapted
to electromagnetic imaging in the multiple scattering
regime. We have investigated the performance of dif-
ferent search strategies under the conditions of weak and
strongmultiple scattering.Wehave shown that a rigorous
evaluation of these directions, requiring the solving of
many forward problems, is not always necessary. This
study paves the way to the development of approximate
iterative inversion techniques that are less time consum-
ing in the moderate multiple scattering regime.
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