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In this Letter, we give a general description of the illumination and object properties for obtaining total absorption.
We show theoretically and numerically that properly designed sub-100 nm metallic particles are able to absorb all
the energy of an incident beam if the latter is adequately shaped. In addition to their interest as absorbers, these
particles act as efficient near-field probes as they convert the incident propagating beam into a localized nonradia-
tive field. © 2013 Optical Society of America
OCIS codes: 260.1960, 260.2110.

The design of optical components allowing total absorp-
tion of the incident light is a challenging issue that has
attracted much attention in the last 20 years. Most of
the studies on this subject, triggered in particular by the
photovoltaic applications, consider planar components,
generally periodic or random structured surfaces [1], il-
luminated by collimated incident beams. In this frame-
work, a significant increase of the absorption level has
been observed as a consequence of resonances in metal-
lic or metallodielectric gratings [2–5]. In parallel, many
studies have been carried on the radiative properties
of nanoparticles [6,7], or even molecules [8], essentially
for forming efficient scattering or absorbing markers. A
strong increase of the extinction coefficient has been ob-
served in the vicinity of the particle resonances [9]. In
this Letter, we combine both approaches and aim at find-
ing a configuration in which the incident light is totally
absorbed by a nanoparticle (i.e., on the smallest possible
volume). This issue is strongly related to the total light
absorption by an atom [10], achieved by time-reversing
spontaneous emission [11], although it remains in a
classical electromagnetism framework.
We first derive the very general condition under which

total absorption of a monochromatic illumination [with
omitted time-dependence exp�−iωt�] can occur. This
problem has already been addressed in a promising
way for scalar waves in one- or two-dimensional
geometries, using the S-matrix formalism [12]. Here,
we present an alternative approach, adapted to vectorial
three-dimensional configurations, that better suits our
application.
We consider a reference inhomogeneous medium,

included in a ball W , that is depicted by its, possibly
complex, relative permittivity εref�r�; see Fig. 1. Outside
W , the relative permittivity is equal to one. A lossy object
Ω is introduced in W so that the relative permittivity of
the system reads εref�r� � χ�r� where χ�r� is equal to
zero outside Ω. Without loss of generality, εref is taken
lossless and constant for all r ∈ Ω. W is illuminated by
a monochromatic electromagnetic field that is created
by sources that are placed beyond W . From Maxwell
equations, the total electric field that exists in W is
solution of

∇ ×∇ × E�r� − εref�r�k20E�r� � k20 χ�r�E�r�; (1)

where k0 � ω∕c. The total field E�r� can be written as the
sum of a reference field Eref�r�, which verifies the homo-
geneous equation

∇ ×∇ × Eref�r� − εref�r�k20Eref�r� � 0; (2)

and a diffracted field Ed�r� � E�r� − Eref�r�, which satis-
fies the outgoing wave boundary conditions beyond W .
Note that contrary to Ed�r�, the reference field Eref�r�,
which represents the field that would exist in absence
of the object, does not satisfy the outgoing nor ingoing
wave boundary conditions. To calculate E�r�, we intro-

duce the Green tensor of the reference medium G
↔
, which

is the solution of

∇ ×∇ ×G
↔
�r; r0� − εref�r�k20G

↔
�r; r0� � k20 I

↔
δ�r − r0�; (3)

where I
↔

denotes the unit tensor that satisfies the out-
going wave boundary conditions. Subtracting Eq. (2)
from Eq. (1) to get the equation verified by the diffracted

Fig. 1. (Color online) Illustration of the total absorption con-
dition. (a) A reference medium is placed in a ball W is illumi-
nated by sources placed outsideW . The reference field Eref that
is created in W satisfies neither the outgoing nor ingoing wave
boundary conditions. (b) Lossy object Ω is introduced in the
reference lossless medium. Under the total absorption condi-
tion, the field E that is created in W satisfies the ingoing wave
boundary conditions.
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field and using Eq. (3), one obtains the classical expres-
sion for the diffracted field [13]:

Ed�r� �
Z
Ω
G
↔
�r; r0�χ�r0�E�r0�dr0: (4)

If the lossy object Ω is designed so that total absorption
occurs, then the total field E�r� must satisfy the ingoing
wave boundary conditions. This condition implies that
the outgoing part of Eref�r� cancels the diffracted field.
The field solution of Eq. (1) that satisfies the ingoing
wave boundary conditions is

E�r� �
Z
Ω
G
↔�

��r; r0�χ�r0�E�r0�dr0; (5)

where A� stands for the complex conjugate of A and G
↔

�
denotes the Green tensor that is the solution that satisfies
the outgoing wave boundary conditions of Eq. (3) in

which εref has been replaced by ε�ref . Thus G
↔�

� is the
solution of Eq. (3) that satisfies the ingoing boundary
conditions. Generally, Eq. (5) does not have any nonnull
solution. It is only with specific object potential and
wavelengths that one can obtain a nonnull field satisfying
Eq. (5). It is worth noting, at this point, that Eq. (5) needs
to be satisfied only for r ∈ Ω and that taking the phase
conjugate of Eq. (5) gives the classical laser mode
equation for the same geometry W in which εref and χ
are replaced by ε�ref and χ�, respectively. Ω is replaced
by a gain objectΩ0 with potential χ 0�r� � χ��r�, as pointed
out in [12,14]. Once E�r� is known, the illumination
configuration of W is perfectly defined. Indeed, the
reference field can be deduced from Eqs. (4) and (5) as

Eref�r� �
Z
Ω

h
G
↔�

��r; r0� −G
↔
�r; r0�

i
χ�r0�E�r0�dr0: (6)

One verifies easily that Eref�r� is a solution of the
homogeneous Eq. (2). When εref is lossless, the reference
field corresponds to the field existing in W , in absence
of Ω, when the latter is illuminated by the time-reversed
(or phase-conjugated) field radiated by the induced
polarization density χ�r0�E�r0� inside the object [15].
We now apply this analysis to the specific problem of

the electromagnetic sink. We search the smallest
possible lossy particle Ω with uniform relative permittiv-
ity ε that is able to absorb all the incident light (if the
latter is adequately shaped) in a given reference
medium. The particle, centered about r0, is assumed to
be small enough compared to the wavelength for the
electric field E to be constant and equal to E�r0� over
the volume v of Ω. To calculate Eq. (5) at r � r0, the

Green tensor G
↔

��r0; r� is split into a Dirac distribution,

−L
↔
δ�r0 − r�, and a principal value distribution [16,17],

yielding

Z
Ω
G
↔

��r0; r0�dr0 � −L
↔
� vG

↔reg

� �r0; r0� (7)

with vG
↔reg

� �r0; r0� � PV
hR

Ω G
↔

��r0; r0�dr0
i

[18]. Noting

α
↔

0 the quasi-static polarizability of Ω [19], α
↔

0 �
vχ�r0�

n
I
↔
� χ�r0�L

↔o−1
, one can approximate Eq. (5) by

α
↔−1

0 E�r0� ≈
h
G
↔reg

�
i�
�r0; r0�E�r0�: (8)

This expression gives the relationship between the
particle polarizability and its environment for total
absorption of light to occur. For a spherical nanoparticle
with radius a in vacuum, it reads

α−10 ≈
2
3v

��1 − ik0a�eik0a − 1�� � k20
4πa

− i
k30
6π

� O�k0a�; (9)

where α0 � 4πa3�ε − 1�∕�ε� 2�. With permittivities taken
from the Palik tables [20], this equality is almost reached
for a silver nanosphere of radius a � 35 nm at λ �
386 nm and for a gold particle with radius a � 63 nm
at λ � 510 nm. Both wavelengths are close to the
spheres’ plasmon resonances. To verify the validity of
our approach we have simulated rigorously the field
Ed scattered by a nanosphere centered about the origin

in vacuum and illuminated by Eref�r��−2iIm
h
G
↔

0�r;0�
i
u,

where u is a unit vector directed along the z axis and G
↔

0
is the vacuum Green tensor. This incident field corre-
sponds to the field that would be obtained in a 4-pi illu-
mination configuration using two facing objectives or a
planar or parabolic mirror [21–23]. We have calculated
the Poynting vector flux of the total outgoing field Ed�r� −
G
↔

0�r; 0�u through the sphere W surrounding the particle
and compared it to the Poynting vector flux of the incom-

ing field G
↔�

0�r; 0�u through the same sphere. All the
calculations were performed with the coupled dipole
method [13,24]. The convergence of the results with
respect to the sphere discretization was checked, using
plane wave illumination, with a code based on the Mie
theory. In Fig. 2, we plot in dB units the ratio between
the outgoing energy flux and the incoming one for
various wavelengths and radii of a silver [Fig. 2(a)]
and a gold [Fig. 2(b)] nanosphere illuminated under
4-pi illumination. We observe that the radius and
wavelength at which about 99% of the incident energy
is absorbed by the particle are very close to that derived
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Fig. 2. (Color online) Metallic nanosphere in vacuum is illumi-
nated under 4-pi configuration. Ratio in dB units of the outgoing
energy flux over the incoming energy flux obtained as a func-
tion of the illumination wavelength and the sphere radius.
Sphere made of (a) silver and (b) gold.
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theoretically. Note that with the total absorption pheno-
menon being closely related to the plasmon resonance, it
is possible to tune the absorption wavelength by coating
the nanosphere with a thin layer of dielectric material
as seen in Fig. 3. Apart from their interest as localized
absorbers, these nanoparticles (combined with the ap-
propriate illumination) could play an interesting role for
imaging and sensing [25]. In Fig. 4 is plotted the magni-
tude of the reference field that exists in the absence of
the particle (dashed curve) and the total field that exists
in the presence of the particle (solid curve). We recall that
the reference field is obtained by time reversing the field
radiated by a dipole oriented along the z axis. It behaves
roughly as sin�k0r�∕r and generates a diffraction-limited
light spot. On the contrary, once the particle is introduced,
the total field is strongly localized, the field magnitude
varying as 1∕r3 in the near vicinity of the nanosphere.
These simulations suggest that these particles could be
used as efficient near-field probes.
In conclusion, we have derived a general condition on a

lossy object and its illumination that ensures total absorp-
tion [Eq. (5)]. This condition imposes the values of the
field inside the object and the values of the incident
field. The latter is obtained by time reversing the field
diffracted by the object while the former satisfies

E�r ∈ Ω� � R
Ω G

↔�
��r; r0�χ�r0�E�r0�dr0. For small metallic

spheres in vacuum, the total absorption condition reduces
to a simple requirement on the sphere polarizability
coupled to an isotropic illumination [21,22]. We have
shown that using this illumination scheme, a silver or gold
nanosphere with radius smaller than 100 nm can absorb
about 99% of the incident energy. We believe that this
simple analysis could be used to design more complex
absorbers (using particle arrays or aggregates).
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Fig. 3. (Color online) Same as Fig. 2 but the metallic sphere is
coated with a thin dielectric layer of relative permittivity 2.25.
The sphere core is made of silver. (a) The dielectric shell is
10 nm thick. (b) The dielectric shell is 20 nm thick.
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Fig. 4. (Color online) Modulus of the electric field in the vici-
nity of a silver nanosphere with radius a � 36 nm and λ �
380 nm under 4-pi illumination as a function of (a) x for
y � z � 0, and (b) z for x � y � 0. Dashed curve, the field
Eref existing without the sphere. Solid curve, the field E existing
in presence of the sphere. The dotted curves indicate the
position the nanosphere surface.
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