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We compare the performance of a total-internal-reflection fluorescence microscope under varying illumination
and substrate conditions. The samples are deposited on a standard homogeneous glass slide or on a grating
and illuminated by one or two interfering beams at various incident angles. A conjugate gradient with posi-
tivity a priori information is used to reconstruct the fluorophore density from the images. Numerical studies
demonstrate that when the sample lies on an optimized grating, the lateral resolution of the microscope is
greatly improved, up to fourfold, the best result being obtained when the grating is illuminated by two inter-

fering beams. © 2009 Optical Society of America
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1. INTRODUCTION

Optical fluorescence microscopy (OFM) is a widely used
imaging tool in biology to study tissues at the scale of cells
down to single molecules [1-3]. Unfortunately, the reso-
lution of this far-field imaging technique is fundamentally
limited by the diffraction process. Point scanning confocal
microscopes obtain at best a lateral resolution (perpen-
dicular to the optical axis) of /3, where \ is the illumi-
nation wavelength, i.e., several hundreds of nanometers
[4]. Hence, improving the spatial resolution of far-field
fluorescence microscopes below 100 nm has become a ma-
jor challenge in the last ten years and has spurred the
emergence of many innovative techniques [5].
Structured illumination microscopy has shown its po-
tential for ameliorating the resolution in both the lateral
(perpendicular to the optical axis) and the axial (along the
optical axis) directions while keeping a wide-field configu-
ration [6]. In this approach, the sample is illuminated by
a periodic light grid stemming from the interference of
two or three coherent beams (standing-wave pattern). Im-
ages of the sample are recorded for different positions of
the grid, and the fluorescence density is retrieved numeri-
cally using an inversion algorithm [7,8]. The smaller the
period of the light grid, the better the resolution. This
technique has been extended to total-internal-reflection
fluorescence microscopy (TIRFM), in which the excitation
field is an evanescent wave obtained through the total in-
ternal reflection of the beam at a glass/air interface [9,10].
This configuration is well adapted to surface imaging in-
asmuch as only the fluorescent markers close to the inter-
face are strongly illuminated. TIRFM is widely used in
biological studies, especially for the observation of cell
plasma membranes or biomolecular dynamics [11]. The
higher resolution of the standing-wave TIRFM (SW-
TIRFM) stems from the fact that the excitation light grid
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has a period of (A\/2n,)sin 0, where n, is the refractive in-
dex of the high-index material whence the illumination
comes and 6 is the angle of incidence. Fundamentally, the
lateral and axial resolution of SW-TIRFM is monitored by
the available high refractive index of the substrate, typi-
cally 1.45 for a convenient prismless, objective-launched
TIRFM. Recently, this method has been shown to achieve
a lateral resolution of approximately 100 nm [10] for an
illumination wavelength of 500 nm while keeping the
100 nm axial resolution of conventional TIRFM.

To further improve the resolution, it is possible to take
advantage of the saturation process that monitors the
fluorescence at high power. The saturated structured illu-
mination microscope [12,13] has been shown to exhibit a
resolution of the order of a few tens of nanometers. Yet,
this nonlinear phenomenon requires high-power pulsed
lasers with an increased risk of photobleaching and pho-
todisruption in comparison with conventional fluores-
cence imaging [6,12]. More recently, it has been proposed
to ameliorate the resolution by reducing the period of the
structured illumination below that of the standing-wave
pattern, i. e., below the diffraction limit. This can be done
by replacing the conventional glass slide of the micro-
scope by a periodically nanostructured glass slide, (here-
after called grating) [14]. The grating is designed so as to
generate a movable highly contrasted light grid with a pe-
riod smaller than half the excitation wavelength. The in-
terest of this approach is that it relies only on linear pro-
cesses and thus can be implemented with low-power
lasers and with any fluorescent markers.

In this work, we present an extended numerical study
of grating-assisted TIRFM. We compare the resolution of
TIRFM using homogeneous illumination, standing-wave
illumination, homogeneous illumination on a grating sub-
strate, and standing-wave illumination on a grating sub-
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strate. We describe the optimization process of the grat-
ing and present an efficient inversion algorithm for
retrieving the fluorophore distribution.

2. SIMULATION OF A TIRFM EXPERIMENT

We consider a sample made of one layer of fluorescent
beads of diameter 20 nm deposited on a substrate, either
a standard glass slide or a grating. The sample is placed
at the focal object plane of an immersed objective with nu-
merical aperture NA=1.45; see Fig. 1. The intensity that
is recorded at the image plane of the microscope can be
simulated by

I7(r)=[(0O X E;) ® P](r) + B(r), for/i=1,...,N,

1)

where O(r) is the fluorophore density, P(r) is the point
spread function of the microscope, I;**(r) is the /th re-
corded intensity on the image plane of the microscope,
E(r) is the excitation light above the substrate for the /th
illuminations, and B(r) represents the noise of the sys-
tem. In the following, we consider that the incident power
and the time of exposure of the camera are chosen in such
a way that one bead radiates 1000 photons on average.
The noise B(r) is taken equal to a Gaussian random vari-
able with a varying variance [(OXE; ®P](r) plus a
Gaussian random variable with a fixed variance equal to
1% of the maximum of [(O X E;) ® P](r). With these formu-
las, we simulate approximately the Poisson noise due to
the fluorescence phenomenon and a background noise. In

Fig. 1. (Color online) Schematic view of the TIRFM that is
simulated in this work. (a) The fluorophores deposited on the
substrate (glass slide: CG) are illuminated by a parallel beam
that is totally reflected at the glass/air interface. IO is an inver-
sion objective, and the image of each fluorophore is formed on the
CCD camera, through the optical system (IO, L). (b) 6, is the
incident polar angle and ¢ is the azimuthal angle. k;,. is the tan-
gential component of the incident wave vector.
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our simulations, we consider only very thin samples, and
we restrict our investigation to the two-dimensional im-
ages obtained at the focal plane of the microscope. The
point spread function is given by the Airy function,

J1(koNAF) \2
p(r)z(M) , 2)

r

where r=\/(x?+y2), kg=2m/\ is the emitted wavenumber,
A=650 nm, and NA=1.45 is the numerical aperture of the
objective. It is assumed in Eq. (1) that the point spread
function is homogeneous, i.e., that it does not vary with
respect to the position on the substrate plane. This as-
sumption can be questioned when the substrate is a peri-
odically nanostructured glass slide. Thanks to the tech-
nique presented in [15], which is based on the reciprocity
theorem, we have checked that the power emitted by a
fluorophore within the collection solid angle of the objec-
tive did not vary more than 15% when the fluorophore
was moved over the grating. In all examples, we use N
=12 illuminations, and we reconstruct the fluorophores
density O with the same inversion algorithm.

3. DESCRIPTION OF THE ILLUMINATION
CONFIGURATIONS

We consider four different illumination configurations,
depicted in Fig. 2. In the first one, Fig. 2(a), the sample is
deposited on a homogeneous glass slide and is illumi-
nated from below by one plane wave with polar angle
0in.=65 deg and 12 different azimuthal angles ¢=n=/6,
n=(0,---,11). The polar angle is chosen beyond the criti-
cal angle at the glass/air interface so that the light inten-
sity decays exponentially as one moves away from the
glass slide. Whatever the azimuthal angle, one obtains a
uniform excitation light on the substrate. We record 12
images to be consistent with the other measurements
and, in particular, to have the same sensitivity to noise.
In the second case, the sample is illuminated by two in-
terfering plane waves that create a standing-wave pat-
tern [10,16] [see Fig. 2(b)]. The polar incident angles of
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Fig. 2. (Color online) Illumination configurations. (a) Glass slide
illuminated homogeneously by a plane wave under total internal
reflection. (b) Glass slide illuminated by a standing-wave pat-
tern. The periodic intensity pattern above the substrate is gener-
ated by the interference of two plane waves. (¢) Grating illumi-
nated by one plane wave. The period of the intensity pattern just
above the grating can be much smaller than that obtained in (b).
(d) Grating illuminated by two interfering plane waves. The in-
tensity pattern above the grating is not periodic in general.
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the two beams are 6,,.= +65 deg, and we take four differ-
ent azimuthal angles ¢=nmn/4, n=(0,1,2,3). For each in-
cidence, the relative phase ¢ between the two beams is
varied three times ¢=n27/3, n=(0,1,2) so that eventu-
ally 12 images are recorded. Basically, the excitation light
at z=0, just above the substrate, can be modeled by

E,(r) =Alexp(ik;,. - r) + exp(— ikip. - T + i) %, (3)

where k;,.=n,(27/\')sin 6,,;a, with Gt=cos ¢X+sin ¢y, r
=(x,y), A’=630 nm is the excitation wavelength, and n,
=1.5 is the refractive index of the substrate. The
standing-wave pattern is depicted in Figs. 3(a) and 3(b)
for 4=0 and ¢=27/3, respectively.

In the third configuration, the sample is deposited on
an optimized grating and is illuminated by one plane
wave with electric field parallel to the substrate (TE po-
larization), polar angle 6,,.=65 deg, and 12 different azi-
muthal angles ¢=n#/6, n=(0,---,11) [see Fig. 2(c)]. The
electric field above a grating illuminated by a plane wave
is pseudoperiodic with the same periodicity as the grat-
ing. The light intensity at z=0 just above the grating can
be modeled by the square of a Rayleigh series [17],

2
E(r) = |exp(ikin. 1) >, A, exp(K,, 1), (4)

n,m c72

where K, ,, is a vector of the reciprocal space of the grat-
ing. In our work, we consider a regular hexagonal grating
with period d, so that K, m=nK,+mK, with K,
=297/d§ and K,=27/d(%-§/\3). Due to the hexagonal
symmetry of the grating, the intensity obtained above the
grating for any incident azimuthal angle ¢, can be de-
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duced from that obtained with the azimuthal angle ¢,
— /3 through a rotation of 7/3 about the z axis. The grat-
ing is optimized so that when it is illuminated under TE
polarization with 6;,.=65 deg and ¢=mu/2, only A, and
A_; are dominant in the Rayleigh series Eq. (4). This
property can be obtained by using a resonant grating
[18,19]. The optimization process and the optogeometrical
characteristics of the designed grating are detailed in Ap-
pendix A. If |Ajo| and |A_; | are of the same order, one
gets an interference pattern similar to that of a standing-
wave illumination with a period d3/2. Figures 3(c) and
3(d) show the intensity above the grating obtained for ¢
=x/2 and ¢=37/2, respectively. One observes that the pe-
riod of the light grid is roughly half that of the standing-
wave pattern depicted in Figs. 3(a) and 3(b). Moreover,
the light grid in Fig. 3(c) is similar to that in Fig. 3(d)
with a shift close to half its period. This shift depends on
the relative phase between the amplitudes Ay and A_; o,
which can be optimized thanks to the resonance phenom-
enon. Note that this light-grid shift is most important to
ensure a homogeneous illumination of sample. We have
checked that the amplitude variation of the excitation
light averaged over all 12 incident angles is smaller than
2, while that obtained for one specific illumination is
about 7.

In the fourth configuration, Fig. 2(d), the sample is de-
posited on the same grating as previously and is illumi-
nated by two interfering plane waves with polar angle
Oine=+65 deg, three different azimuthal angles ¢=m/2
+nw/3, n=(0,1,2), and four different relative phases i
=nwm/2,n=(0,1,2,3). In this case, the intensity just above
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Fig. 3. (Color online) Excitation light patterns generated by the illumination configurations depicted in Fig. 2, (a), (b) Simulation of the
field intensity just above the glass slide when the illumination is made of two interfering plane waves with 6,,.= +65 deg and relative
phase 0 and 27/3 respectively. (c), (d) Simulation of the field intensity just above the grating when the illumination is an s-polarized
plane wave with 6,,,=65 deg and azimuthal angle ¢=7/2 and ¢=37/2, respectively. The intensity is calculated with the rigorous Fourier
modal method [17]. (e), (f) Same as (c), (d) but the grating is illuminated by two s-polarized plane waves with 6,,.= £65 deg, ¢=7/2, same

amplitude and relative phase 0 and 7, respectively;
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the grating is no longer periodic. Using the symmetry of
properties of the structure, the intensity obtained for
0nc=+65 deg and ¢=7/2 can be modeled by

Ey(r)= |exp(iKip.'T) >, A, exp(iK,,, 1)
n,mEZ2

2
+exp(— ik - r+ i) 2 A, exp(-iK, , - T)

n,m c72
(5)

Due to the choice of the polar and azimuthal angles, A,
and A_; ; are dominant in the series appearing in Eq. (5).
When the azimuthal angle is changed, the intensity pat-
tern is simply rotated by /3 about the z axis. In Figs.
3(e) and 3(f), we plot the intensity existing just above the
grating for two different relative phases, =0, and ¢==
respectively. As previously, we checked that the amplitude
variation of the intensity averaged over all 12 illumina-
tions is about 2, while that for one specific illumination is
about 7.

4. DESCRIPTION OF THE INVERSION
ALGORITHM

In standing-wave microscopy, the inversion algorithm
that permits recovery of the density of fluorescence from
the various images is usually based on a noniterative pro-
cedure, the first step of which consists of the calculation of

the two-dimensional Fourier transform I™* of the re-
corded intensities. It takes advantage of the phase varia-

tions of the Fourier transform of the illumination E;, Eq.
(3), obtained through the three translations of the
standing-wave pattern, to retrieve, through a one-to-one
correspondence, the Fourier amplitude of the density of

fluorophores O on an extended Fourier domain [7,10,20].
Unfortunately, when the sample is deposited on a grating
and illuminated by one plane wave, the different illumi-
nation patterns are obtained by changing the incident azi-
muthal angle, and there is no additional translation of the
pattern as in standing-wave microscopy. Hence, it is im-

possible to use the same algorithm to infer O from 7}“95.
Thus, we derived a very general iterative inversion
scheme to reconstruct the fluorophore density. We
checked that this conjugate-gradient algorithm yielded
the same result as the Fourier inversion procedure in the
standard standing-wave configuration.

We first define a two-dimensional investigation domain
Q) at the surface of the glass slide (or of the grating), and

we estimate the fluorophore density O at the nodes of a
regular meshing of ) so as to minimize the cost func-
tional,

L

Xlre-AOE)E
A =1 A
F(O) = =W "= - AOE))|3,

=1

L

2 Il
=1
(6)

where |.||o indicates the norm of the function on Q, and
the calculated fluorescence intensity I; for an estimation
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of the density of fluorophores O is cast in operator nota-
tion,

I,=(0 X E)®P=A(OFE)). (7)

We use a conjugate-gradient algorithm to solve this linear
inverse problem [21].

The problem is now stated as finding the density of
fluorophores such that the associated intensity, computed
from Eq. (7), matches the measured one, I;***. We propose

in the present paper an iterative construction of 0] using
the following recursive relationship:

On = OrL—l + andn’ (8)

where On and én_l represent estimations of the unknown
density of fluorophores at iteration steps n and n-1, re-
spectively. The correction «,d,, is composed of a scalar «,,
and an updating direction d,, taken equal to the well-
known Polak-Ribiére conjugate gradient direction [22,23],

<gn|gn _gn—1>ﬂ
lgnale,
in which (-|-)q is the inner product defined on Q. The

function g, is the gradient with respect to the density of
fluorophores of the cost functional F, Eq. (6). It is given by

dn =8nt 7ndn—1’ with Yn= 9)

L

g,=-WX EA'h, 1, (10)
=1

with hl,n_lzlfnes—A(On_lEl) being the residual error in
the model described by Eq. (7), while A’ is the adjoint op-
erator of A.

The scalar weight «, is determined at each iteration
step n by minimizing the cost functional F given by Eq.
(6). Substituting the expression of On given by Eq. (8) in
the expression of F given by Eq. (6) leads to a minimiza-
tion of a polynomial with respect to «,,. Hence, «, is de-
termined analytically.

In many cases introducing the positivity a priori infor-
mation of the parameter of interest, herein the density of
fluorophores, improves the performance of the inverse
scheme [22—-24]. This is realized by retrieving an auxil-

iary function % such that O:%’z. The inverse scheme pre-
sented above remains unchanged provided that the gradi-
ent g, is replaced by the gradient g, which is the

gradient of the cost functional F with respect to & instead
of O:
L

Enii=—2WX E/EAThy . (11)
=1

Note that our inversion algorithm requires knowledge of
the excitation pattern E;. Small errors on E; can cause ar-
tifacts or distorted images. Hence, it will be necessary, in
practice, to accurately evaluate E; prior the inversion, ei-
ther with cross-correlation techniques such as those al-
ready implemented in standing-wave microscopy [8] or
with an optimization process.
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5. NUMERICAL RESULTS AND DISCUSSION

When the sample is illuminated by a homogeneous beam,
the recorded intensity I is equal to the density of fluoro-
phores O convoluted by the point spread function P of the
microscope. The resolution of the image is given by the
full width at half-maximum of P which, for NA=1.45, is
about 0.4\. This assertion is illustrated In Figs. 4(a) and
4(b), which display a simulation of a TIRFM experiment.
Figure 4(a) shows a theoretical sample made of randomly
scattered beads, while Fig. 4(b) shows the image that
would be recorded on a CCD camera if the sample were
illuminated homogeneously.

An insight on the ideal resolution of a given imaging
configuration can be obtained by estimating the domain of
spatial frequencies of O that is theoretically accessible
from I;. The larger this domain, the better the resolution.
This estimation is easily done when the illumination is
homogeneous. It suffices to Fourier transform the re-

corded intensity I, I=0P, where I, O, P are the Fourier
transforms of I, O, and P, respectively. In an ideal non-

noisy system, O is accessible on the spectral domain S

where P is nonnull. With the chosen point spread func-
tion, S is a disk of radius 2NAk. This low-pass filter gives
a resolution of about 0.25\ for NA=1.45. There exist
many deconvolution techniques that permit amelioration
of the images when the point spread function is known
[25]. In the present work, we used the iterative recon-
struction algorithm presented in Section 4. Figures 4(c)
and 4(d) display the density of fluorescence obtained by
deconvoluting the CCD image, Fig. 4(b), without and with
the positivity information, respectively. Hereafter, we will
always use the positivity information in the reconstruc-
tion procedure.

In the standard standing-wave configuration, Fig. 2(b),

the Fourier amplitude of the density of fluorophores O can
be obtained on the extended Fourier domain S={k,k

(@,

Fig. 4. (Color online) Simulation of a TIRFM experiment. (a)
Theoretical sample: (beads with a diameter of 20 nm, randomly
scattered on a glass slide). (b) Simulation of the image recorded
on the CCD camera using a homogeneous illumination. (c) De-
convolution of (b) with the conjugate-gradient algorithm depicted
in Section 4 without assuming the positivity of the density of
fluorescence. (d) Same as (c¢) but the algorithm accounts for the
positivity.
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<2NAko} UK, |k+2Kk;,.| <2NAky} [7,20], where 2k;,, rep-
resents the spatial frequency of the light grid illuminat-
ing the sample. The higher k;,., the larger S and the bet-
ter the resolution. With the chosen standing-wave
pattern, the accessible spectral domain obtained with
structured illumination is almost twice as large as that
obtained with homogeneous illumination. Thus, one ex-
pects to ameliorate the resolution of the image by a factor
of 2.

When the sample is deposited on a grating, one cannot

easily infer O from I, as in the standing-wave approach.
However, we may still try to estimate the potential reso-
lution of the imager from the analysis of the highest spa-
tial frequencies of the light grid illuminating the sample.
The intensity obtained above the grating when the latter
is illuminated by one plane wave with 6;,,=65 deg and
Gine=/2 can be approximated by

Ej(r)=|Ago+A_10exp(iK_; o 1) (12)

This expression is close to that obtained with the
standing-wave approach except t}_lat the spatial pulsation
of the grid is now K_; g=4m/(d3) instead of 2k;,.. With
our periodically nanostructured substrate, the spatial
pulsation of the grating light grid is found to be 1.7
greater than that of the standing-wave pattern.

When the grating is illuminated by two plane waves,
the intensity above the substrate is no longer periodic.
For 6,,.=+65 deg and ¢=7/2 and a phase difference of ¢
between the two waves, it can be approximated by

Ey(r) = |Ag cos(Kip. " T + /2) + A_y o cos[ (K + K 1) - 1
+ l///2]|2. (13)

In this case, the highest spatial frequency of the intensity
pattern is 2|k;,.+K_ ;o/=1.3K_;,. Hence, illuminating
the grating with two plane waves should ameliorate fur-
ther the resolution of the image. It should be roughly four
times better than that obtained with the homogeneous il-
lumination and two times better than that obtained with
the standing-wave pattern.

The successive amelioration of the resolution of the
standard TIRFM with the standing-wave, the grating,
and the standing-wave-grating configurations are illus-
trated in Fig. 5. The sample, made of beads with various
interdistances, permits quantification of the resolution
improvement brought about by the different configura-
tions. The best resolution is obtained in the standing-
wave-grating configuration, which permits one to distin-
guish two beads that are separated by A/10. Note that
when the grating is illuminated by only one plane wave,
some beads are not properly retrieved due to the residual
inhomogeneity of the average excitation. This problem
disappears if the grating is illuminated by two interfering
beams. To assess the ability of the different techniques to
retrieve the fluorescence density of more complicated
samples, we plot in Fig. 6 the reconstructed density of the
random sample of beads depicted in Fig. 4 for the
standing-wave, the grating, and the standing-wave-
grating configurations. Once again, one observes that us-
ing the grating substrate improves the resolution sub-
stantially.
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(Color online) Illustration of the resolution improvement brought by the grating. (a) Theoretical sample: beads with a diameter

Vol. 26, No. 12/December 2009/J. Opt. Soc. Am. A 2555

2 1
0.8
1
0.6
<
>
0.4
0
0.2
- -1 0 1
2 1
0.8
1
0.6
<
>
0.4
0
0.2
T 0 1

1

of 20 nm that are separated by \/2, \/4, N\/6, \/8 from bottom to top on the left side and \/10, \/14 from top to bottom on the right side.
(b) Simulation of an image recorded on the CCD camera using homogeneous illumination. (¢) Normalized density of fluorescence obtained
with the iterative inversion procedure accounting for the positivity (Section 4) in the homogeneous configuration; see Fig. 2(a). (d) Same
as (b) but in the standing-wave configuration; see Fig. 2(b). (e) Same as (b) but in the grating configuration; see Fig. 2(c). (f) Same as (b)

but in the standing-wave grating configuration; see Fig. 2(d).

6. CONCLUSION

We analyze numerically the resolution improvement
brought about by replacing the glass slide of a structured-
illumination total-internal-reflection fluorescence micro-
scope by an optimized grating. The grating is illuminated
by one plane wave or by two interfering beams at various
incident angles. It has been designed so that the periodic
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intensity pattern obtained at its surface can be translated
or rotated by changing the incident angle. Thus, the
sample is homogeneously illuminated on average. We de-
velop a versatile inversion algorithm based on a
conjugate-gradient technique and accounting for the posi-
tivity of the unknowns to retrieve the fluorescence density
of the sample from the images. The 160 nm period grating

x)?»

Fig. 6. (Color online) Reconstructed fluorescence density of the random sample depicted in Fig. 4. (a) Standing-wave configuration; see
Fig. 2(b). (b) Grating configuration; see Fig. 2(c). (¢c) Standing-wave grating configuration; see Fig. 2(d). (d), (e), and (f) zoom of (a), (b), and
(c) respectively.
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optimized in this work permits one to obtain a resolution
of about 60 nm, i.e., a fourfold improvement of resolution
in comparison with conventional TIRFM. In theory, even
better results could be obtained using gratings with
smaller periods.

APPENDIX A: OPTIMIZATION OF THE
GRATING

The key issue of the approach presented in this work lies
in the optimization of the grating substrate, which should
exhibit two important properties. First, the intensity ob-
tained above the grating for one incident angle should be
highly contrasted, with high-spatial-frequency features.
Second, the intensity averaged over all incident angles
should be roughly homogeneous. This second property is
essential to avoid the presence of blind spots on the
sample. To obtain high-spatial-frequency features, it is
convenient to design a grating with a period that is small
compared with the wavelength (at least smaller than A/3
to expect a better resolution than a classical standing-
wave illumination). Now, if the periodic permittivity
modulation is weak (for example, an engraved glass
slide), then, the zero-order amplitude A, will be much
larger than that of the higher-order terms. As a result,
the intensity pattern above the grating will be poorly con-
trasted. Yet, if the permittivity contrast is high (for ex-
ample, by placing periodically metallic particles on the
glass slide), then changing the incident angles, polariza-
tion, or relative phases does not permit, in general,
enough modification of the positions where the field is in-
tense or weak, as they are linked to the jumps of permit-
tivity. As a result, the average intensity exhibits blind
spots where the fluorescence is never detected. To avoid
these two pitfalls, we considered special kinds of gratings
that are known as waveguide gratings or resonant grat-
ings. The latter have been studied essentially for their fil-
tering properties [18,19].

A resonant grating is basically a multilayer that is
decorated by a periodic structuration. At the excitation
wavelength \’, the multilayer is designed to support a
guided or surface mode, described by its wavenumber
kmode- If the incident angles and the period of the grating
are chosen so that the phase-matching condition,

|kinc + K—l,Ol = kmode’ (14)

is satisfied, the incident wave couples to the mode
through diffraction with the (-1,0) order. This resonance
phenomenon specifically increases the (-1,0) amplitude
in the Rayleigh series, Eq. (3). The main issue is then to
design a multilayer supporting guided or surface modes
with high wavenumbers in order to generate a light grid
with the smallest period possible.

In previous work [14,26,27], we have considered very
thin metallic films supporting high-spatial-frequency sur-
face plasmons (the thinner the film, the higher the plas-
mon wavenumber). In this paper, following the recent
study presented in [28], we have considered a dielectric
multilayer supporting guided modes. Indeed, these struc-
tures appeared easier to fabricate. The wavenumber of
guided modes depends essentially on the index of refrac-
tion of the guiding layer. Now, in optics, the refractive in-
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(b)

Fig. 7. (Color online) Schematic representation of the grating.
(a) Top view. (b) Side view; d=157 nm, e=50 nm, ~=88 nm, [
=19 nm, p=50 nm, incident wavelength =630 nm.

dices of the lossless dielectrics that are generally used for
waveguiding are smaller than 2.5, which limits %4, to
2.5k, where ky=2m/\'. Hence, to further increase the
value of k4., We have considered a lossy semiconductor,
silicon, which presents a high index of refraction with
small losses ng;=4.+10.1 at A’=630 nm. Of course, this
material cannot be used for standard waveguiding appli-
cations since the mode propagates only over a few mi-
crometers. Yet, it can be used for our application because
the resonance phenomenon is strong enough to increase
A_j o at the same level as A, with an appropriate design
of the periodic nanostructure. The resonant grating that
is used in this work is made of one silicon layer of thick-
ness h=88 nm deposited on a glass substrate. This layer
supports a TE guided mode with k,q.~3.5k; at N’
=630 nm. It is decorated by periodic holes on a triangular
mesh. The period d is chosen so that Eq. (14) is satisfied
for 6,,,=65 deg and ¢=m/2, d=157 nm. Note that to ex-
cite a TE guided mode in these conditions, the incident
plane wave must be s-polarized; that is, the incident elec-
tric field is perpendicular to the plane of incidence. The
diameter e=75 nm and depth p=50 nm of the holes are
optimized to maximize the value of A_; 5. To deal with a
flat interface, the grating is planarized with a thin layer
of resin that fills the holes n,.,=1.5. The geometry of the
grating is depicted on Fig. 7.
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