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Tomographic diffractive microscopy is a recent imaging technique that reconstructs quantitatively the three-
dimensional permittivity map of a sample with a resolution better than that of conventional wide-field microscopy.
Its main drawbacks lie in the complexity of the setup and in the slowness of the image recording as both the
amplitude and the phase of the field scattered by the sample need to be measured for hundreds of successive illu-
mination angles. In this Letter, we show that, using a wavefront sensor, tomographic diffractive microscopy can be
implemented easily on a conventional microscope. Moreover, the number of illuminations can be dramatically de-
creased if a constrained reconstruction algorithm is used to recover the sample map of permittivity. © 2012 Optical

Society of America
OCIS codes: 180.6900, 110.1758.

Tomographic diffractive microscopy (TDM) has recently
emerged as a powerful imaging technique for retrieving
the three-dimensional (3D) map of permittivity of un-
stained samples [1,2] with high resolution. It consists in
recording hundreds of holograms of the probed object
under various illumination angles and processing these
data with an inversion algorithm to estimate the object
permittivity map. This technique has been successfully
applied to biological samples, where the permittivity con-
trast is weak and linear approximations (such as the
Born approximation) can be used to model the link be-
tween the holograms and the permittivity [3—6]. In this
case, the permittivity map can be retrieved by Fourier
transforming the data. Axial and transverse resolutions
about twice better than that of wide-field and confocal
microscopy have been observed with this approach [2].

Although the theoretically and experimentally ob-
served performances of TDM make it a very promising
imaging technique for nonfluorescent samples, its devel-
opment remains hindered by the complexity and slowness
of its practical implementation. The necessity to measure
both the phase and the amplitude of the scattered field is
generally accomplished by adding a reference beam to the
setup and recording an interference pattern in an on-axis
or an off-axis arrangement [2]. This approach, which re-
quires the use of light sources with high temporal coher-
ence, is plagued by the speckle noise stemming from the
parasitic reflections and scattering along the light path.
The phase-stepping methods in the on-axis technique are
generally time consuming and very sensitive to stability
perturbations, whereas the off-axis technique imposes ad-
ditional constraints on the data discretization. Since hun-
dreds of holograms under different illumination angles are
typically required to reconstruct the 3D permittivity map
of the samples with the usual Fourier-transform-based
inversion algorithms [3-5], the experimental difficulty
(especially concerning the stability of the interferometric
module) and the recording time of TDM are significantly
increased.
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To ameliorate the practical performances of TDM, a
high-speed setup [5] and a common path interferometer
geometry [6] have been reported, but these solutions can-
not be readily implemented in a standard microscope. In
this Letter, we show that it is possible to accelerate dra-
matically the TDM image recording while simplifying its
adaptation to any standard microscope by using a wave-
front sensor and an efficient inversion algorithm.

Our TDM setup is based on a reflection microscope, as
seen in Fig. 1, in which the camera has been replaced by a
wavefront sensor. A collimated laser beam (He—Ne,
A = 633 nm), controlled by a mirror mounted on step
motors (Newport NSA12), illuminates the sample
through an objective with NA = 0.95 (Zeiss Epiplan-
Apochromat 50x) under various angles of incidence.
The backscattered field is imaged with a 290x magnifica-
tion on a high-resolution wavefront sensor (Phasics SID4-
HR, 400 x 300 pixels) based on quadriwave lateral shear-
ing interferometry [7]. No reference path is needed, and
both the phase and the intensity of the imaged field are
retrieved with a single shot measurement. To demon-
strate the potential of our setup for reconstructing the
permittivity map of 3D samples, we consider a test object
made of four resin cylinders deposited on a reflective
silicon substrate. The cylinders have a diameter close
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Fig. 1. Schematic of the TDM setup. M, rotative mirror; BE,
beam expander; D, diaphragm; BS, beam splitter; OL, objective
lens; L1, tube lens; L2, L3, relay lenses (f' = 3.5 and 20 cm); WS,
wavefront sensor.
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to 1 um, a height of 120 nm, and their axes are placed at
the corners of a square with 2 ym side.

Generally, wavefront sensors are used to estimate slow
phase variations like those produced by aberrations of
lenses or weakly scattering biological samples. At
A = 633 nm, our wavefront sensor can detect a phase dif-
ference between two adjacent pixels from 0.01 to 2.9 rad
[7]. The constraint imposed by this upper bound is greatly
relaxed by sampling the point spread function of the set-
up with about eight pixels (105 nm per pixel with the
magnification). To verify that the sensor is able to re-
cover quantitatively the phase and amplitude scattered
by our relatively contrasted samples, we compared, for
the same successive illumination angles, its image fields
to those given by on-axis phase-shifting interferometry
with a standard CCD camera. For the wavefront sensor,
a phase reference is measured on the bare substrate for
each illumination prior to imaging the sample, and single
shot measurements are performed. This reference
further diminishes speckle noise that is already greatly
reduced by the multi-illumination measurement. For
phase-shifting interferometry, 30 images are averaged
for each illumination to increase the signal-to-noise ratio.
We have used six illuminations in the plane (x,z) with the
electric field orthogonal to the plane of incidence and six
illuminations in the plane (y,z) with the electric field par-
allel to the plane of incidence, with polar angles varying
in the [-30,30] deg range. Figure 2 shows a comparison of
the phase and amplitude of the scattered far field within
the objective NA for both techniques, obtained by Four-
ier transforming the measured image fields. The data
have been restricted to about 2000 scattering angles cen-
tered on the specular reflection on the substrate. The
missing circle in the data corresponds to the domain
where the field scattered by the sample is masked by this
reflection. A very good agreement has been obtained
between the two measurement methods for the whole
data set.

To reconstruct the permittivity map of the sample,
most reconstruction procedures assume that the far field
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Fig. 2. (Color online) (a), (c) Wavefront sensor, amplitude,

and phase of the scattered far field (30° illumination angle);
(b), (d) same data for phase-shifting interferometry. k, and
k,, spatial frequencies; k), wavenumber.

scattered in the k,; direction by an object illuminated by a
plane wave with wave vector k; is proportional to the
Fourier transform of the relative permittivity contrast
x of the object [1,3,5,6] taken at (k; — k;). For each illu-
mination, the measured scattered field gives access to
the Fourier components of the permittivity on a cap of
sphere centered about k; [2]. Changing the illumination
angle permits us to explore another Fourier domain.
Thus, the permittivity map can be simply retrieved by
Fourier transforming the whole data set. This approach,
valid for weakly contrasted samples, typically requires
hundreds of illuminations to fill the whole accessible
Fourier domain with fine enough discretization steps
for the Fourier transform to be accurate.

In our configuration, the sample is deposited on a re-
flective substrate (for improving the axial resolution [8]),
and the permittivity contrast of the resin in the air, close
to 1, is higher than the ones usually met in biological sam-
ples (<£0.1). To image the sample with a limited number of
views and to account for the substrate and the possible
multiple scattering phenomenon, we have developed an
iterative inversion technique based on a rigorous vector-
ial modeling of the wave-sample interaction. This algo-
rithm has already been applied with success to the
imaging of highly contrasted two-dimensional objects
[9-11]. The inversion problem consists in retrieving the
unknown relative permittivity contrast y inside an inves-
tigation domain W from the measurements f;, with
l=1,...,.L, of the scattered field in the far-field domain
I" obtained for L different illuminations. It relies on
the relationship between y and the scattered far field
E¢, which involves the total field that is formed inside
the sample, E; [12]. The latter reads in operator notation,

E, = E) + AyE,, (1)

E{ = ByE, (2)

where E} is the reference field that would exist in W in
the absence of the sample for the /th illumination, and 4, ;
(B; ;) gives the field radiated at pointj in W (k in INHbya
dipole source placed at point ¢ in W. Note that A and B
account for the presence of the substrate. In our ap-
proach, both y and E; are estimated iteratively so as to
minimize the cost functional,

L
F(rE) = Cr)_lif - ByEy|I2
1=1

L
+Cw) lIE -E) - AR, (3
1=1

where Cr and Cy are normalization coefficients. The
first term of F ensures that the field scattered by the es-
timated object will be close to the measurements, while
the second term ensures that the estimated total field in
W will satisfy Maxwell equations for the estimated value
of y [9]. The initial guesses for E, and y are obtained by
backpropagating the measurements [12]. The inversion
procedure is first applied to a large investigating domain
W with a coarse meshing. Then W is downsized to a box
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Fig. 3. Comparison of the modulus of the 3D inverse Fourier
transform of the data set (53 nm meshing) [(a), (b)] and of the
permittivity map retrieved with the iterative inversion algorithm
[(c), (d), (e), (D)]. (c), (d) The height of the investigating domain
is 1.6 ym with a mesh size of 200 nm. (e), (f) Zoom on the sample
with a height of 0.4 ym and a mesh size of 50 nm (dashed white
line, actual geometry of the sample). The figures in the top row
show transverse cuts at (a), 2 = 53, (¢) 100, and (e) 125 nm, and

the ones in the bottom row longitudinal cuts at y = 1 ym. Cuts
are along the white dotted lines.
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adapted to the sample size, and the mesh is tightened for
an improved resolution. Note that, in all our reconstruc-
tions, the absorption of the sample is neglected so that y
is sought as a positive real number.

Figure 3 compares the reconstructions, obtained from
the wavefront sensor data, of the Fourier transform tech-
nique [Figs. 3(a) and 3(b), 53 nm meshing] and the itera-
tive inversion procedure for different heights of W and
different meshing: a height of 1.6 ym with 200 nm mesh
size [Figs. 3(c) and 3(d)] and a height of 400 nm with
50 nm mesh size [Figs. 3(e) and 3(f)]. We observe that
the Fourier transform technique provides a noisy recon-
struction particularly distorted along the z axis. Indeed,
the presence of the reflective surface is interpreted as a
mirror object symmetrically placed along this axis. More-
over, this technique is very sensitive to the missing points
in the Fourier space due to the restricted amount of data.
Usually, several hundreds of illuminations are required
to fill the Fourier space adequately. On the contrary,
our reconstruction procedure estimates accurately the
sample dimensions, even with the coarse meshing. Only
four iterations were needed for the convergence of the
iterative process, and similar reconstructions were ob-
tained with the interferometric measurements. To our
knowledge, this is the first time that such an iterative
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inversion procedure is successfully applied to 3D experi-
mental data in optics. As only 12 illuminations were used,
an acquisition time gain of more than 10 can be expected
using our algorithm compared to the Fourier transform
technique. On the other hand, as Eq. (1) has to be solved
rigorously at each iteration, the computational time is sig-
nificantly increased. Yet this rigorous calculation of E; in
W is necessary only if the sample supports multiple scat-
tering. If the Born approximation is valid, E; can be re-
placed by E?, and the computation time then remains
comparable to that of the inverse Fourier transform.

In conclusion, the setup complexity and the long acqui-
sition time of TDM can be dramatically ameliorated by
using a wavefront sensor and constrained inversion pro-
cedures. With these improvements, TDM can be imple-
mented in a conventional wide-field microscope, with
low-cost weakly coherent sources, and the number of il-
luminations can be significantly reduced while retaining
the high resolution and quantitative imaging perfor-
mances of the technique.

The authors are very grateful to Laurent Milord for his
contribution to the data treatment procedure.
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