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Abstract: We develop a general computational approach, based on
the discrete dipole approximation, for the study of radiation dynamics
near or inside an object with arbitrary linear dielectric permittivity, and
magnetic permeability tensors. Our method can account for dispersion
and losses and provides insight on the role of local-field corrections in
discrete magnetodielectric structures. We illustrate our method in the case
of a source inside a magneto-dielectric, isotropic sphere for which the
spontaneous emission rate of a source can be computed analytically. We
show that our approach is in excellent agreement with the exact result,
providing an approach capable of handling both the electric and magnetic
response of advanced metamaterials.
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1. Introduction

In 1946 Purcell pointed out that the dynamics of an electromagnetic source is not an intrinsic
feature of the source but is, rather, a consequence of the coupling between the source and its
environment [1]. This idea, however, only became widely accepted in the late 1960s, in large
part owing to Drexhage’s pioneering work on emitters near mirrors [2]. We now know that
the emission rate of an emitter in the presence of matter will, in general, be different from the
emission rate for the same emitter in vacuum [3]. Traditionally, non-magnetic materials are
used to control the radiation dynamics of electromagnetic sources, however, recent advances
in metamaterial research have made it apparent that the ability to tailor both the electric and
magnetic response of a material leads to a much larger wealth of electromagnetic behavior [4].

The first important step in the study of radiation dynamics in active metamaterials is to de-
velop a general computational approach for radiation dynamics in magneto-dielectric (MD)
media, i.e., media with both electric and magnetic properties. Moreover, achieving any signif-
icant control over the electric and magnetic properties of an electromagnetic structure would
most likely require a composite system, with a discrete structure. Therefore it is also essential to
understand how the discreteness of the structure may affect the radiation dynamics of a source.
In this article we present an approach that fulfills these objectives.

Our approach is based on the discrete dipole approximation (DDA) (also called the coupled
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dipole method (CDM)) [5–10] (see [11] for a review). The method was originally developed
to study the scattering of light by dielectric interstellar dust particles. However, over the years
the DDA has been used to study absorbing dielectrics and metals, and the method has been
generalized to deal with periodic structures [12, 13], optical forces [14–16], optical trapping
[17, 18], and radiation dynamics [19–21]. While the DDA has been used traditionally to study
the scattering of light by non-magnetic structures, the method has also been formulated to
address electromagnetic scattering [22–24], and optical forces [25], for magnetic and negative-
index materials.

In this article, we present a further generalization of the DDA that can be used to compute the
radiation dynamics of a source in an arbitrary environment with linear dielectric and magnetic
responses. The generalization provides an approach capable of describing complex, advanced
metamaterial structures. The example of a source in a spherical magnetodielectric cavity is
presented to illustrate the accuracy of the generalized approach. Furthermore, this example
highlights the importance of including magnetic effects. In particular, we will show that, in the
continuous case, strong enhancement of the response of an electric source arises when the cavity
has a magnetic response, and vice-versa, whereas, in the discrete case, the effect is mitigated
by local-field enhancements.

2. DDA for Radiation Dynamics in an Arbitrary Magnetodielectric cavity

Consider an electromagnetic source located at position r0 in the presence of a cavity (we shall
use the term cavity as a generic term for any object near or containing the source). Let k = ω/c
be the wave number where ω is the angular frequency and c is the speed of light in vacuum. Let
us assume that the source undergoes an electric dipole transition with unit dipole moment p. As
a shorthand we will refer to this situation as an electric source. In the weak coupling regime,
the rate at which the source loses energy, radiatively and non-radiatively, in the presence of the
cavity (Γcav), normalized to the free-space case (Γ∞), is given by [20]:

Γcav

Γ∞
= 1+

3
2k3 p · Im[ ¯̄Gcav(r0,r0;ω)] ·p, (1)

where ¯̄Gcav is the sum of the electric and magnetic field-susceptibility tensors (FSTs) associated
with the cavity. Therefore, the radiation dynamics of the source can be studied provided one
knows the FST associated with the environment of the source. To this end, we need to establish
a procedure to derive the FST, in the general case, using the DDA.

Let us consider an object with linear dielectric permittivity tensor ¯̄ε(r,ω) and linear magnetic
permeability tensor ¯̄μ(r,ω). We discretize the object into N subunits over a cubic lattice with
spacing d. Each subunit is assumed to be small enough to satisfy the dipole approximation.
Omitting the dependence on ω henceforth, the optical response of subunit i is described by
electric and magnetic polarizability tensors:

¯̄αe
i =

[
¯̄I − 2

3
ik3 ¯̄Ai

]−1
¯̄Ai, ¯̄αm

i =
[

¯̄I − 2
3

ik3 ¯̄Bi

]−1
¯̄Bi, (2)

with

¯̄Ai =
3d3

4π
[ ¯̄ε(ri)− ¯̄I][ ¯̄ε(ri)+2 ¯̄I]−1, ¯̄Bi =

3d3

4π
[ ¯̄μ(ri)− ¯̄I][ ¯̄μ(ri)+2 ¯̄I]−1, (3)

where ¯̄I is the identity tensor. Let ¯̄G ee
0 (r,r′) and ¯̄G me

0 (r,r′) be free-space FSTs that give the
electric and magnetic fields at r due to an electric source at r′ [26]. Similarly, we introduce
¯̄G em
0 (r,r′) and ¯̄G mm

0 (r,r′) in the case of a magnetic source. The FSTs representing the linear
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response of the electromagnetic fields at subunit i due to an electric source at r0, in the presence
of the cavity, can be written in a self-consistent form:

¯̄G ee(ri,r0) = ¯̄G ee
0 (ri,r0)+ ∑

j �=i

[
¯̄G ee
0 (ri,r j) ¯̄αe

j
¯̄G ee(r j,r0)+ ¯̄G em

0 (ri,r j) ¯̄αm
j

¯̄G me(r j,r0)
]

(4)

¯̄G me(ri,r0) = ¯̄G me
0 (ri,r0)+ ∑

j �=i

[
¯̄G me
0 (ri,r j) ¯̄αe

j
¯̄G ee(r j,r0)+ ¯̄G mm

0 (ri,r j) ¯̄αm
j

¯̄G me(r j,r0)
]
.(5)

From the expressions above we can find ¯̄G ee(ri,r0) and ¯̄G me(ri,r0) by solving a linear system
using, for instance, the techniques described in [27]. The FST giving the electric field scattered
by the object back to the source can now be expressed as:

¯̄G ee(r0,r0) = ¯̄G ee
0 (r0,r0)+∑

j

[
¯̄G ee
0 (r0,r j) ¯̄αe

j
¯̄G ee(r j,r0)+ ¯̄G em

0 (r0,r j) ¯̄αm
j

¯̄G me(r j,r0)
]
(6)

= ¯̄G ee
0 (r0,r0)+ ¯̄G ee

cav(r0,r0). (7)

Inserting ¯̄G ee
cav(r0,r0) in Eq. (1) yields the decay rate for an electric source in the presence of

the object. A similar treatment would lead to ¯̄G mm
cav (r0,r0) and to the decay rate for a magnetic

source.

3. Local-field factor

We can illustrate our approach in the case of a source at the center of a lossless, homogeneous
spherical magnetodielectric cavity with radius a. For this configuration, ¯̄Gcav can be expressed
analytically and the decay rate can be calculated following Chew’s approach [28], allowing
us to compare the DDA against the exact result. However, we should first note one essential
difference between the two approaches. The analytical approach assumes that the cavity is
made of a continuous medium. However, in the DDA treatment, and most likely in any actual
metamaterial structure, the cavity is a composite medium with a discrete structure. This implies
that we need to consider the influence of local-field corrections on the radiation dynamics of the
source. Indeed, in a discrete structure, the radiation dynamics of a source may be altered by two
types of boundary effects. The first one, which we have focused on so far, is the usual Purcell
effect which relates to the shape of the outer boundary of the cavity. The second boundary effect
corresponds to the fact that the source is placed between the elements forming the composite
material (in our case the DDA subunits), rather than in a continuous medium. As a result, the
electromagnetic field of the source will interact with two sets of boundaries, the ”local” ones
between the vacuum region where the source is and the subunits in the immediate neighborhood
of the source, and the ”global” ones which define the shape of the cavity. In the DDA, because
we discretize the cavity, both contributions are actually included in Eq. (7). Accordingly, to
compare the DDA result to an exact derivation of the decay rate in the case of a spherical
cavity made of a continuous medium, we first need to compensate for the local-field effect
(discreteness) which means isolating the contribution to the decay rate due to the discrete lattice.

As we showed in Ref. [29] in the case of an isotropic, lossless non-magnetic medium, if
the source is introduced in the cavity without disturbing the DDA lattice, the local-field factor
can be derived analytically as fast-converging lattice sums. In the present case, for a magneto-
dielectric medium, because the local field factor is derived in the quasistatic approximation,
electric and magnetic effects are decoupled and, as a result, for an electric (magnetic) source
the local-field factor only depends on the permittivity (permeability) of the medium. In other
words, this means that for an electric source the expressions derived in Ref. [29] still hold, and
for a magnetic source, all one has to do is replace ε by μ in the same expressions.
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Of course, here we are assuming that the discrete elements forming the object are small
enough that the induced polarization on each element is uniform. If the discrete elements had
more complex geometry and scattering properties (e.g., the element are too large to satisfy the
dipole approximation), the local-field correction would have to be computed by taking into
account the actual electromagnetic properties of the discrete elements. However, such issues
are beyond the scope of this work. Once the local-field factor is known, the DDA result can be
normalized by this factor to produce the decay rate associated with a continous medium. The
local-field factor depends on the position of the source within the DDA lattice. For instance,
if we place the electric source at the center of a homogeneous spherical cavity in such a way
that it lies at a reduced position ( 1/2, 1/2, 1/2) within the lattice the local-field factor will be
(ε +2)/3 [29]. Note that this local-field factor does not depend on the lattice spacing provided
that the spacing remains smaller than the wavelength inside the material and the material is
lossless. If the material is lossy, the DDA can still be used to compute decay rates but the local-
field effect will have a non-radiative component that will depend on the lattice spacing [20].

4. Example : Radiation Dynamics in a Spherical Magnetodielectric Cavity

4.1. Continuous picture

To illustrate how the material properties of the cavity affect the spontaneous emission rate of
the source we consider an electric source at the center of a lossless, homogeneous, isotropic
spherical cavity with radius a and a fixed refractive index n =

√εμ = 2. However, while the
refractive index is fixed, we consider different “apportionments” of the refractive index between
the electric and magnetic responses of the cavity.

We calculate, using both our DDA approach with cubic lattice spacing a/30 and Chew’s
theory [28], the normalized decay rate for the source as a function of the size of the sphere
expressed in terms of the parameter ka for three values of (ε,μ): (4,1), (2,2), and (1,4). In
Fig. 1(a), the analytical results are plotted as solid lines while the DDA results are plotted as
open circles. The agreement of the DDA calculation with the exact result is excellent. For the
three cases we observe the usual oscillations of the decay rate with the cavity size (interferences
between an oscillating dipole and the reflected field). However, the most interesting feature
emerges when we examine the magnitude of the decay rate, as we decrease (increase) the
permittivity (permeability). Keeping in mind that the curves in Fig. 1(a) pertain to cavities
with the same refractive index, we see that, over the range of cavity sizes considered here, the
largest emission rate enhancement for an electric source is more than 5 times larger for ε = 1
and μ = 4 than for ε = 4 and μ = 1. The difference in the enhancement is a consequence of
the fact that ε and μ do not appear on the same footing in the expression of the decay rate.
This can be best illustrated in the simpler case of a source in an infinite medium with refractive
index n. In the non-magnetic case (μ = 1) the decay rates for an electric source in the medium
and in vacuum are related by Γmed = nΓvac =

√
εΓvac. In the general case, however, we have

Γmed = μnΓvac = μ√εμΓvac [30]. The dependence of Γmed on μ means that for a fixed value
of the refractive index, the decay rate for an electric source in an infinite medium scales linearly
with the magnetic permeability. On the other hand, the decay rate would scale as the inverse
of the dielectric permittivity. The case of a magnetic source (i.e., a magnetic dipole transition)
leads to a similar result with the interchange of ε and μ . In the case of a spherical cavity, the
dependence of the decay rate on the permittivity (or the permeability) will depend on the size
of the cavity, however, for a given refractive index, the largest enhancement of the emission
rate for an electric source in a continuous spherical cavity is always achieved for μ = n2 due to
the dominant role played by the permeability in the expression of the decay rate. Thus if one
is able to tailor the electric and magnetic response of the cavity, for a given refractive index of
the cavity, it appears to be more beneficial to enhance the magnetic properties of the cavity in
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Fig. 1. Normalized emission rate as a function of the size parameter ka for an electric
dipole at the center of a spherical cavity with radius a. (a) Solid lines: analytical calculation
for a continuous, homogeneous cavity; open symbols: DDA calculation for a continuous,
homogeneous cavity. The corresponding material constants (ε,μ) are given in the inset. (b)
DDA calculation for a discrete, homogeneous cavity. The corresponding material constants
(ε,μ) are given in the inset. The source is located at the reduced position (1/2, 1/2, 1/2)
within a discretization cell.

order to enhance the radiation dynamics of an electric source and vice-versa.

4.2. Discrete picture

If we do not normalize the DDA result with the local-field factor we get the decay rate for the
discrete spherical cavity. The results are plotted as solid lines in Fig. 1(b). Note that the CDM
result for (ε,μ)=(1,4) is the same as for the continuous cavity because in that case the local-field
factor is 1 since for an electric source the local-field factor depends on ε only. For a discrete
structure, the difference in rate enhancements for the three sets of material constants is less
pronounced. Although a large μ yields an enhancement of the decay rate for an electric source,
a large ε contributes to the enhancement through the local-field factor squared. This example
highlights the interplay between Purcell and local-field effects in a discrete MD cavity. It also
suggests that a study of radiation dynamics in electromagnetic metamaterials would most likely
need to consider the discrete nature of the structure.

5. Conclusion

In conclusion we have developed a general formalism to study radiation dynamics in complex
structures with linear permittivity and permeability tensors. We have validated our approach
against the analytical result for a homogeneous magneto-dielectric spherical cavity. Further-
more, we have highlighted the role of local-field corrections in discrete structures. Although
in our case each discretization cell supports an electric and a magnetic dipole resonance, in an
actual metamaterial structure the form of the local field correction will depend on the specific
geometry and material composition of each discrete element forming the metamaterial. While
we focused here on the dissipative aspect (decay rate) of the interaction between the source
and its environment, the dispersive aspect (frequency shift or anomalous Lamb shift) can also
be derived once the field-susceptibility is known [20]. Finally, we have seen that even a sim-
ple configuration such as an isotropic, homogeneous MD sphere can affect the dynamics of a
source in an interesting way. This highlights the fact that it is essential to include the magnetic
response of the material (the refractive index is not enough) in the description of the coupling
between a source and a MD cavity.
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