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Abstract: The present paper deals with the reconstruction of three-
dimensional objects from the scattered far-field. The configuration under
study is typically the one used in the Optical Diffraction Tomography
(ODT), in which the sample is illuminated with various angles of incidence
and the scattered field is measured for each illumination. The retrieval
of the sample from the scattered field is accomplished numerically by
solving the inverse scattering problem. We present herein afast method
for solving the inverse scattering problem based on the Coupled Dipole
Method (CDM) and applied it for complex background configuration
such as buried objects in a layered medium. Numerical experiments are
reported and robustness against the presence of noise in thedata is analyzed.
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1. Introduction

The classical optical microscope have a resolution above the well known Rayleigh criterion
and give a two dimensional image of three dimensional objects . Using the optical sectioning
technique a three dimensional image can be obtained and the resolution can be improved with
a deconvolution technique but this is time consuming. [1] Inthe last decades, intensive devel-
opments of methods have been carried out to image biologicalsamples using electromagnetic
probes [2, 3]. The resolution is in some cases below the Rayleigh criterion,i.e., better than a half
of the wavelength of the exciting field. Microscopes operating in the near field, for example the
Scanning Near-Field Optical Microscope (SNOM) [3], have the disadvantage of approaching
the probe close to the sample. Thus, the interaction betweenthe probe and the sample —which
is not easy to model, since it depends on the shape of the probeand on the constitutive materials
of both sample and the probe— blurs the image of the sample. Furthermore, the probe scanning
on the top of the surface, it is not obvious to extract information related to objects buried in a
substrate. In addition, for the case of a specimen depositedon a substrate, moving the probe
along the surface may damage the sample which aimed to be imaged.

In the present paper, we consider an optical imaging system based on the Optical Diffrac-
tion Tomography (ODT) technique, which circumvents aforementioned disadvantages, with
however an inferior resolution to the one achieved with nearfield microscopes. The basic idea
underlying the ODT technique is firstly lighting the sample with various illuminations and sec-
ondly retrieving the object under test from the scattered field supposed known (modulus and
phase). This second part requires a numerical procedure forsolving the inverse scattering prob-
lem. Under the Born approximation the inverse scattering problem is linear and an image of the
object under test may be performed through a simple inverse Fourier transform [4, 5] or thanks
to the singular value decomposition [6, 7].

We have recently developed an algorithm that permits to retrieve accurately the three-
dimensional relative permittivity of scattering objects present in homogeneous background [8]
or above a dielectric substrate [9] with less than 100 pointsof observations per illumination.
The main bottleneck of this method is its greed in terms of time computation. Typically, several
hours are needed with a rather simple configuration,e. g., objects of characteristic dimension
of λ/4 present in a homogeneous background medium, and inversionperformed with an in-
vestigating domain of volume size 8λ 3 (λ being the wavelength of the incident field) [8]. In
the biological application when studying many samples, this amount of computation time is
overthrowing. In the present paper, we present a method which allows to locate the unknown
objects in complex background environment such as layered media, and to differentiate the
constitutive materials of the unknown objects in terms of absorbing or transparent materials.
However, this method is not quantitative since the refractive indexes of the objects under test
are not accurately retrieved. On the other hand the inversion is performed within only few min-
utes for a configuration involving layered media while the full solution [8] is obtained within
several hours when the background is homogeneous.

2. Theory

2.1. Forward scattering problem

We use the coupled dipole method to compute the scattering oflight by arbitrary objects. As this
method has been presented in previous article, we only recall the main steps [10]. The objects
under study are discretized intoN dipolar subunits, and the field at each subunit satisfies the
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following self consistent equation:

E(r i) = Einc(r i)+
N

∑
j=1

S(r i , r j)α(r j)E(r j), (1)

whereEinc(r i) is the incident field, andα(r j) the polarizability of thejth subunit which meet
the Claussius-Mossotti relation:

α(r j) =
3d3

4π
ε(r j)−1
ε(r j)+2

. (2)

ε(r j) is the relative permittivity of the subunitj, andd the size of the subunit.S is a tensor which
correspond to the linear response of a dipole in the system ofreference,i.e., homogeneous
space [10], a substrate, or a multilayered system [11]. Notice that wheni = j in Eq. (1) the
contact term is take into account through the Clausius-Mossotti relation [10]. This is the weak
form of the CDM which presents enough accurate for our aims. The dipole moment of the
subunit i is written asp(r i) = α(r i)E(r i), hence Eq. (1) can be written under this symbolic
form:

E = E
inc

+Ap (3)

whereA is a matrix (3N×3N) which contains all the tensorsS. E, E
inc

andp are vector (3N)
which contain all the local field, the incident field, and the dipole moment, respectively. The
field scattered by the objects at an arbitrary positionr reads as

E(r) =
N

∑
j=1

S(r , r j)p(r j). (4)

If we have a set ofM points of observation, one can use this symbolic form:

f = Bp, (5)

whereB is a matrix (3M×3N) andf a vector (3M) which contains all the diffracted field. Notice
that the matricesA andB do not depend of the incident field and of the nature of the object.

2.2. Inversion algorithm

The object is assumed to be confined in a bounded boxΩ (test domain or an investigating

domain) and illuminated successively byl = 1, · · · ,L electromagnetic excitationE
inc
l=1,···,L. For

each excitationl , the scattered fieldf l is measured on a surfaceΓ at M points. The inverse
scattering problem is now stated as determining propertiesof unknown objects present in the
investigating domainΩ from f l . The approach used for solving this inverse scattering prob-
lem is based on a previous work of authors [12] where a simple configuration (homogeneous
background medium) is involved. In the present paper we extend the method in order to han-
dle layered media configurations. The basic ideas underlying the inversion algorithm remain
the same as in Ref. [12]. In this method, a sequencepl ,n is built up according to the following
recursive relation:

pl ,n = pl ,n−1 +βl ,ndl ,n , (6)

wheredl ,n is an updating direction,βl ,n a scalar number determined at each iteration step by
minimizing the cost functionalFn that represents the discrepancy between the data (measure-
ments) and the scattered field corresponding to the best available estimate of the objectpl ,n.
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Fig. 1. Sketch of the illumination and detection configuration. The observation points are
in the far field zone regularly placed on a half sphere. The illumination corresponds to 16
plane wave propagating towards to the positive values ofz in both planes(x,z) and(y,z)
such that the electric field is in the incidence plane. The angle between the incident wave
vector and thez axis ranges over−80◦ to 80◦. The cube represents the objects under test
and the background can be either homogeneous or layered medium.

The cost functionalFn is defined thus:

Fn(pl ,n) = WΓ

L

∑
l=1

∥

∥

∥
f l −Bpl ,n

∥

∥

∥

2

Γ
, with WΓ =

1
L

∑
l=1

∥

∥f l
∥

∥

2
Γ

. (7)

∥

∥Q
∥

∥

Γ is the deduced norm from the inner product of two vectors< R,Q >Γ defined onΓ. This
inner product reads as< R,Q >Γ= ∑rk∈Γ R⋆(rk).Q(rk) whereR⋆ denotes the complex conju-
gate ofR. Now usingpl ,n and Eq. (6), Eq. (7) leads to a polynomial expression of the weighting
coefficientsβl ,n. Then the cost functional is minimized with respect toL scalar coefficientsβl ,n.
As updating directiondl ,n the authors took the Polak-Ribière conjugate gradient direction

dl ,n = gl ,n;p + γl ,ndl ,n−1, with γl ,n =

〈

gl ,n;p , gl ,n;p −gl ,n−1;p
〉

Ω
∥

∥gl ,n−1;p

∥

∥

2
Ω

, (8)

where< ., . >Ω is the same inner product as defined previously but acting on vectors defined on
Ω. The vector functiongl ;p is the gradient of the cost functionalF with respect topl evaluated
for the(n−1)th quantities. This gradient reads as:

gl ,n;p = WΓB
†[

f l −Bpl ,n−1

]

, (9)
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whereB
†

is the transpose complex conjugate matrix of the matrixB. Once the sourcespl are
reconstructed, one can determine the fieldsEl insideΩ using the Eq. (3). The polarizabilityα
at the positionr j is then given by

α(r j) =

L

∑
l=1

E⋆
l (r j).pl (r j)

L

∑
l=1

|El (r j)|
2

. (10)

where∗ denotes the complex conjugate. The permittivityε distribution is determined easily
using Eq. (2).

3. Numerical results

In this section are presented numerical experiments to illustrate the performance of the imaging
method described previously. The section is subdivided in three parts. The first one is devoted
to the simple case involving a homogeneous background. The second part deals with objects
embedded or deposited on a substrate. Finally, the last parttreats the complicated case of targets
buried in a layered medium. In all cases, results of reconstruction from corrupted data are
presented. Thus, the robustness of the inversion scheme against the presence of noise in data
is emphasized. The synthetic data used for inversion were obtained thanks to a forward solver
with a mesh size ofλ/20 while inversions were performed with a different mesh of size λ/10.
All presented results were obtained without any post-treatment.

3.1. Simple configuration: case of homogeneous background medium

We start with the study of two objects present in a homogeneous background medium . The
two objects are cubes of sidea = λ/4 and separated by a distance ofc = λ/3 (λ being the
wavelength of vacuum). The relative permittivity of the cube located atx≈−0.3λ is ε = 2.25
while the relative permittivity of the other one located atx≈ 0.3λ is ε = 2.25+ i0.5. The illu-
mination of the samples is as described in Fig. 1,i.e., 16 plane waves in the two perpendicular
planes(x,z) and(y,z). The electrical field remains in the incidence plane (Fig. 1). Let us denote
by k inc the wavevector of the incident field andkd the wavevector of the diffracted field. The
investigated domainΩ is a large cube of volume 2λ ×2λ ×2λ .

Figures 2(a-d) present results of the inversion described in the previous section. The chosen
representation of this configuration is used in the entire paper. For each set of four figures, first
row corresponds to the reconstructed real part of the relative permittivity, in the plane(x,z) for
the left image and in the plane(x,y) for the right image. The second row is as for the first row
but for imaginary part of the relative permittivity insteadof the real part. The full line curves
represent the boundaries of the actual objects.

The convergence was achieved after 20 iteration steps, we did not observe any marked
changes when pursuing the iterative process. Henceforth, all numerical experiments reported
in the present paper correspond to the 20th iterate solution. The needed CPU time to com-
plete the inversion was 5 mn using a standard commercial Personal Computer with an internal
clock frequency of 3 GHz. Notice thatp is obtained only in 80 seconds by minimizing the cost
functionalF defined in Eq. (7). Therefore, the main computation time is spent to obtained the
internal fieldvia Eq. (3). Hence the main advantage of this method is that Eq. (3) is used only
once. In the method presented in Refs. [8, 9] the linear system represented by Eq. (3) is solved
at each iteration step for each angle of incidence, this explains its amount of the computation
time about 10 hours.
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Fig. 2. Map of the reconstructed relative permittivity using our inversion scheme. The size
of the investigating domain is 2λ ×2λ ×2λ . Objects under test are cubes (boundaries of
these cubes are plotted in black) of sidea = λ/4 and separated byc = λ/3. The actual
relative permittivity of the cube isεl = 2.25+0.5i andεr = 2.25 for the left and right cube,
respectively. The four left figures are obtained from noiseless data,while the right figures
are obtained from a corrupted scattered field withu= 10%. a) and e) shows the real part of
the relative permittivity in the planey = 0. b) and f) shows the real part of the permittivity
in the planez= 0. c) and g) shows the imaginary part of the permittivity in the planey= 0.
d) and h) shows the imaginary part of the relative permittivity in the planez= 0.

Figures 2(a) and 2(b) show that the resolution for the real part of the permittivity is better
along thex axis than along thez axis. Using Ewald’s sphere, the projection ofkd− k inc along
thez axis yields to an interval of[−kinc;kinc] while the projection along thex axis leads to an
interval twice larger. This explains the better resolutionalongx axis. However, the reconstructed
objects are not well separated along thex axis. Regarding the reconstruction of the imaginary
part of relative permittivity, Figs. 2(c) and 2(d), the single absorbing object is perfectly located
(the left cube), yet it is shifted downwards. This may be due to the illumination done only in the
direction of thezaxis positive. Using a symmetric illumination in both directions (zpositive and
negative), the reconstructed objects would be perfectly centered on the actual objects. Note that
a slight absorbing part appears on the right-hand cube, due to a weak coupling between both
cubes. Now, we investigate the robustness of the algorithm of reconstruction against a presence
of noise in data. In view of approaching the experimental conditions, we corrupt the scattered
far-field data,f l=1,···,L, by an additive uncorrelated noise on each component of the electric field
at each position of observation,

f̃ v
l (rk) = f v

l (rk)+uAeiφ . (11)

v stands for the components alongx, y, or z, A = max(|f l=1,···,L(rk)|) andk = 1, . . . ,M. φ is a
random number taken for each component of the positions of observation and incident angles
with uniform probability density in[0,2π]; u is a real number smaller than unity that monitors
the noise level. Figures 2(e-h) show the reconstruction in the presence of noise (u = 10%) . It
appears evident that the obtained results are similar to those shown in Figs. 2(a-d).

We examine now the ability of the inverse algorithm to retrieve a complex shaped object.
Therefore, we consider an inhomogeneous "U-shaped" objectthat is constituted by a dielectric
bar and two absorbing cubes. The bar is of widthλ and of section (λ/4×λ/4). The relative
permittivity of this bar isε = 2.25. The two cubes are of sideλ/4 and of relative permittivity
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Fig. 3. Same as Fig. 2 but with an inhomogeneous U-shaped object. This object is con-
stituted by a dielectric bar (ε = 2.25) and two absorbing cubes located at the extremities
(ε = 2.25+0.5i). Maps a), c), e) and g) are plotted in the planey= 0; b) and f) in the plane
z= 0; and d) and h) in the planez=−0.4λ . The dashed lines in the figures a), c), e) and g)
represent, the cross sections maps of b), f), d) and h) in the(x,y) plane. The figures on the
right are organized as the figures on the left but with a scattered field corrupted with noise
(u = 30%).

ε = 2.25+0.5i. The illumination as well as the observation is unchanged. Figure 3 presents re-
sults of the inversion. It is clearly shown that the "U-shaped" object is accurately retrieved even
from corrupted data with a value ofu as high as 30%. Thus, the reconstruction method pre-
sented here is very robust against a presence of the noise in data. In addition, this fast method
can provide us with a 3-D cartography showing objects that are absorbing or not. In the fol-
lowing sections, we will attempt to show that this method hasthe major advantage of being
applicable to extremely complex situations, which would betedious to carry out with a method
as described in Ref. [9].

3.2. Case of two semi-infinite media

3.2.1. Objects above a dielectric substrate

We consider the same objects as in Fig. 2 (a = λ/4 and separated byc = λ/3) of the same
relative permittivity but now deposited on a flat interface separating the superstrate (air,ε = 1)
and the substrate (glass,ε = 2.25). The total reflection angle is in this caseθ c = 41.8◦. The
investigating domain is of volume (2λ ×2λ ×λ ) and located above the interface.

The computation time (5 mn 20 s) is similar to the one may obtained in the case of the
homogeneous background medium (5 mn).

Figures 4(a-d) show the reconstruction obtained using onlypropagative illumination,i.e.,
|θ inc| < θ c. In this case, Figs. 4(a) and 4(b) are similar to Figs. 2(a) and 2(b) in terms of
resolution. This is due to the fact that Ewald’s spheres are identical in both configurations.
However, Figs. 4(c) and 4(d) show an accurate localization of the imaginary part of permittivity.
We interpret this superior resolution as being the result ofa coupling effect between objects and
the substrate, with multiple scattering improving the resolution [9]. Figures 4(e-h) show the
result of reconstruction using only evanescent illumination, i.e., |θ inc| > θ c. Considering the
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Fig. 4. Map of the reconstructed relative permittivity using the inversion algorithm. The size
of the investigating domain is 2λ ×2λ ×λ . We havea= λ/4,c= λ/3, andεl = 2.25+0.5i,
εr = 2.25, andεs = 2.25. The four left figures are obtained with only propagative waves,
while the figures on the right are obtained with solely evanescent waves. a) and e) show the
real part of the permittivity in the planey= 0. b) and f) show the real part of the permittivity
in the planez≈ λ/7 (dashed line). c) and g) show the imaginary part of the permittivity in
the planey = 0. d) and h) show the imaginary part of the permittivity in the planez= λ/7
(dashed line).

real part of permittivity, both cubes are now perfectly resolved as shown in Figs. 4(e) and 4(f).
However, the objects do not lie on the surface. The result forthe imaginary part is less accurate,
because the absorbing cube seems to float above the surface; and, a significant portion of the
imaginary part appears at the object on the right. The use of evanescent illumination thus yields
to good resolution, due to the high spatial frequencies provided by the incident wave (enlarged
Ewald’s sphere), yet the object is not well located.

We now use both propagative and evanescent illumination,i.e., −80◦ < θ inc < 80◦. Further-
more, noise has been added to the diffracted field (u = 10%) in order to mimic experimental
conditions. Figure 5(a-d) clearly show that adding propagative and evanescent waves improves
the result: both the real and the imaginary parts show excellent adequation between the ac-
tual profile and the reconstructed one. The two cubes are welllocated and perfectly resolved.
Furthermore, Figs. 5(c) and 5(d) show only one truly absorbing cube, which is not the case
in Figs 5(g) and 5(h) where only evanescent waves are used norin Figs 4(g) and 4(h) where
noiseless data are used. The effect of noise in the reconstruction, when using evanescent waves,
Figs. 5(e-h) (in particular, artifacts appear at the top of the investigating box in Fig. 5(e)), is
much higher than the one observed when using both propagative and evanescent waves Fig. 5(a-
d). In fact, an illumination with evanescent wave contains high spatial frequencies, which are
known to be sensitive to noise. Illuminating targets with both propagative and evanescent waves
leads to combine the robustness and the accuracy of the reconstruction.

3.2.2. Objects buried in the dielectric substrate

We consider herein a configuration of objects buried in a glass-substrate (ε = 2.25). In Figs. 6
and 7 the objects are the same as in Section 3.2.1 : cubes witha = λ/4 separated byc = λ/3
with a relative permittivityεl = 2.25+ 0.5i for the cube located at(−0.3λ ,0,−0.65λ ) and
εr = 2.25 for the cube located at(0.3λ ,0,−0.65λ ). Illumination remains at−80◦ < θ inc < 80◦

and the dimension of the investigating domain is 2λ × 2λ × 1.5λ and includes the air-glass
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Fig. 5. Map of the relative permittivity given by our inversion scheme when the scattered
field is corrupted with noise(u = 10%). The size of the investigating domain is 2λ ×2λ ×
λ . We havea = λ/4, c = λ/3, andεl = 2.25+ 0.5i, εr = 2.25, andεs = 2.25. The four
figures on the right are obtained with only evanescent waves, while the figures on the left
are obtained with both evanescent and propagative waves. a) and e) show the real part of
the permittivity in the planey = 0. b) and f) show the real part of the permittivity in the
planez= λ/7 (dashed line). c) and g) show the imaginary part of the permittivity in the
planey = 0. d) and h) show the imaginary part of the permittivity in the planez= λ/7.

interface. This configuration would be more difficult to study with an optical microscope. It is
typically the one that would be used for mines detection if the scattered fields were measured
closed to the interface. This is not a limitation for our method, it suffices to replace the far-field
tensor into the near-field one.

Figures 6(a-d) show the reconstruction obtained without noise when the observation points
are located only above the substrate as in all the previous figures. The objects are clearly well
located below the interface and the cubes are separated. However, the objects are not resolved
as clearly as in Figs. 5(a-d). This may be due to interactionsbetween the objects and substrate’s
surface. The imaginary part of the relative permittivity isextremely well located on the left-hand
cube, although it appears above the surface like an absorbing object. To improve the quality of
reconstruction, observations were carried out below and above the surface. The illumination
remains unchanged. We observe in Figs. 7(a-d) a good localization along thez axis for the
real part of permittivity, and a good lateral separation. Inaddition, the imaginary part is now
perfectly located on the actual cube. We explain this resolution by looking at the Ewald sphere,
which is slightly enlarged with respect to thex-axis and much more enlarged in thez-axis
direction. In the case of the scattered field corrupted with noise (u = 10%), Figs. 6(e-h) and
Figs. 7(e-h), show that the reconstruction is almost not altered by the presence of noise in the
data. This is particularly true when observation points arelocated above and below the surface
(Figs. 7(e-h)).

In all previous examples we have restricted our study to objects situated in a single(x,z)
plane. One may wonder what would be the reconstruction if theobjects are placed somewhere
else. This is investigated in Fig. 8 where the observation points are located above and below
the surface, the illumination being the same as previously.Figure 8 presents the result of the
reconstruction of four targets located in different(x,z) planes. All objects are well retrieved.
In fact, objects can be distributed anywhere, we have only chosen objects in particular plane
for sake of simplicity. In addition, the computational timeis identical for all cases presented
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Fig. 6. Map of the relative permittivity when the objects are embedded in the substrate.
The size of the investigating domain is 2λ ×2λ ×1.5λ . We havea = λ/4, c = λ/3, and
εl = 1.5+ 0.5i, εr = 1.5, andεs = 2.25. Left figures (a-d) are obtained without noise and
figures on the right (e-h) are obtained with a scattered field corrupted withnoise (u= 10%).
a) and e) show the real part of the permittivity in the planey = 0. b) and f) show the real
part of the permittivity in the(x,y) plane located atz= −0.65λ (dashed line). c) and g)
show the imaginary part of the permittivity in the planey= 0. d) and h) show the imaginary
part of the permittivity in the plane(x,y) located atz= −0.65λ (dashed line).
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Fig. 7. Same as in Fig. 6 but with measurements carried out from both below and above the
surface. Illumination of objects remains unchanged.
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Fig. 8. Same as in Fig. 7 but with four objects located at(−0.3λ ,−0.3λ ,−0.65λ ),
(−0.3λ ,0.3λ ,−0.65λ ), (0.3λ ,−0.3λ ,−0.65λ ), and (0.3λ ,0.3λ ,−0.65λ ), with ε =
2.25,ε = 2.25+0.5i, ε = 2.25+0.5i, andε = 2.25, respectively.

in Figs. 6-8. Indeed, the computational time is completely independent of the shape and the
distribution of the objects inside the investigating domain. It depends only of the size of the
investigating domain.

3.3. Complex configuration: Case of layered medium

The last configuration studied in this paper concerns a relatively complex configuration. This
configuration involves a multilayered system with objects of different permittivities. The chosen
geometry is depicted in Fig. 9(a). The illumination is the same as in Section 3.2.2,−80◦ <
θ inc < 80◦, and the observation points are located only above the surface.

Note that the computational time in this rather complex caseis only about 16 mn, which is

mainly due to the construction of the multi-layer tensor,i.e. matrix A. Once the matrixA is
built the needed computational time for solving the inversescattering problem remains almost

unchanged. Saving the matrixA would be preferred for a repeated imaging objects present in
an investigated domain of fixed size.

Figures 9(b-e) show the reconstruction obtained with the geometry described in Fig. 9(a).
Note that each layer has its own color scale. In the case of noiseless data, the map of the real
part of the relative permittivity, Fig. 9(b), shows that theobjects are perfectly retrieved, except
the one slightly above the substrate. Figure 9(c), represents the imaginary part of the relative
permittivity. It is shown that a single absorbing cube is present in the layered medium. The
case where the scattered field is corrupted with noise(u = 10%) is presented in Figs. 9(d)
and 9(e). The main effect of the noise is to perturb the map of the imaginary part of the relative
permittivity. We noticed that when two cubes are located in different layers but one on top of the
other, coupling occurs, thus hindering reconstruction. This type of coupling, between different
objects present in different layers, deserves to be investigated more in depth.
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Fig. 9. a) Sketch of the studied configuration. The dimension of the investigating domain
is 2λ ×2λ ×2.2λ anda = λ/4. b) Real part of the relative permittivity in the(x,z) plane.
Notice that each layer has its own color scale. c) Imaginary part of the relative permittivity
in the(x,z) plane. d) and e) same as b) and c), respectively, but with noisy data(u = 10%).

4. Conclusion

We have simulated an experiment of optical diffraction tomography. The method that we pro-
posed is a full vectorial inversion scheme. It permits to localize the objects and to discriminate
absorbing objects and transparent ones. The objects can be in homogeneous space or put upon a
flat substrate or buried in a substrate. Is is also possible tohandle a more complex configuration
with many objects in a layered medium. The main advantage of our method is the rapidity. The
requested computational time is only few minutes. This low computational time can be useful
in the biological applications, if one wants to localize theobjects in stratified media. Notice that
if one knows the value of the relative permittivity of the objects, then a post treatment can be
done which will enhance the resolution.
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