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We demonstrate that the axial resolution of a reflection tomographic diffractive microscope is drastically improved
when the sample is placed in front of a perfect mirror. We show analytically and with rigorous simulations that this
approach permits us to obtain images with the same isotropic resolution as that obtained when the sample is illu-
minated and observed from every possible angle. Themain difficulty lies in accounting properly for themirror in the
inversion algorithm. © 2010 Optical Society of America
OCIS codes: 180.6900, 110.1758.

Tomographic diffractive microscopy (TDM) is a recent,
increasingly used imaging technique that is capable of
mapping the three-dimensional (3D) permittivity of label-
free samples with high resolution [1–5]. It consists in re-
cording multiple holograms of the sample under various
angles of illumination and reconstructing numerically the
permittivity map from this set of data. TDM setups are of-
ten implemented in conventional high-NA microscopes
[1–3,6,7] so that the illumination and the light detection
is performed on one side of the sample only. Because
of this dissymmetry, the axial resolution of TDM is much
poorer than the transverse resolution. The lack of angular
coverage imposed by the microscope axial dissymmetry
can be partially compensated by rotating the sample
[8–10] or by imposing the positivity of the sought dielectric
contrast in the inversion procedure [6]. However, these
approaches are limited to certain types of samples, and
the image resolution remains generally below that which
would be obtained with a complete isotropic tomography
configuration where the sample is illuminated and ob-
served from every possible angle. In this Letter, we show
that placing the sample in front of a mirror in a standard
reflection TDM configuration permits us to compensate
entirely the dissymmetry of the setup. The main difficulty
is in separating the top and bottom views of the sample
from the diffracted far field. We show that this task, which
is quite complex in the “simplified” two-dimensional (2D)
scalar case [11–13] becomes relatively easy in the 3D
vectorial configuration. Rigorous simulations of transmis-
sion, reflection, and mirror-assisted reflection TDM ex-
periments support our analytic demonstration.
We first briefly sketch the principles of TDM in free

space. Let us consider a sample in vacuum, described
by its relative permittivity ϵðrÞ. The sample is illuminated
by a monochromatic incident field Eref , which is assumed
to be a plane wave with wave vector kinc, kinc ¼ 2π=λ ¼
k0∶Eref ¼ E0eik

inc:r. We detect in far field Ed, the field dif-
fracted along the k direction at the position R. Under the
renormalized Born approximation [14], one obtains

EdðkÞ ¼
Z

G
↔
ðk; rÞαðrÞErefðrÞdr; ð1Þ

where αðrÞ ¼ 3
4π ½ϵðrÞ − 1�=½ϵðrÞ þ 2� is the density of po-

larizability of the object and G
↔
ðk; rÞp is the vectorial elec-

tric field in the k direction radiated by a dipole p placed

at r. Because, in free space, [15] G
↔
ðk; rÞp ¼ eik0R

R e−ik:rk×
ðk × pÞ, one obtains

EdðkÞ ¼ eik0R

R
~αðk − kincÞ½k × ðk × E0Þ�; ð2Þ

where ~αðk − kincÞ is the 3D Fourier transform of the po-
larizability. Hence, there is a one-to-one correspondence
between the measured scattered field and the spatial fre-
quency of the permittivity. By varying the incident and
observation angles, one covers a 3D Fourier domain over
which ~ϵ is known. The larger this domain, the better the
resolution. In the complete configuration [see Fig. 1(c)],
if one assumes an infinite signal-to-noise ratio, the acces-
sible Fourier domain is a sphere with radius 2k0 [7]. The
point-spread function (PSF) of the imager, F , will be gi-
ven by the inverse Fourier transform of the low-pass fil-
ter, which is equal to 1 in the accessible Fourier domain
and 0 elsewhere. In the complete configuration, where
the sample is illuminated and observed from every pos-
sible angles, F is isotropic:

F isoðrÞ ¼ 1

2π2r3 ½sinð2k0rÞ − 2k0r cosð2k0rÞ�: ð3Þ

Fig. 1. (Color online) Description of different TDM con-
figurations (insets, accessible Fourier domain). (a) Reflection
(half-sphere of radius 2k0). (b) Transmission (tore with cir-
cular section of radius k0). (c) Isotropic (sphere of radius
2k0). (d) Mirror-assisted reflection configuration (sphere of
radius 2k0).
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The resolution, which corresponds to the Rayleigh crite-
rion, is given by the first zero of F . It is about 0:35λ. For
TDM setups based on reflection or transmission micro-
scopes [Figs. 1(a) and 1(b)], the accessible Fourier do-
main of the sample permittivity is only a portion of the
2k0 sphere. We plot in Fig. 2 the PSF of a transmission
and reflection TDM configuration (with NA ¼ 1). The
PSF of the transmission TDM is real and strongly elon-
gated along the z axis. The PSF of the reflection config-
uration is complex. If the sample is a pure phase object,
the resolution of the real part of the reconstructed per-
mittivity is isotropic and similar to that of the complete
configuration. However, if the object is absorbing and de-
phasing light, the real and imaginary parts of the recon-
structed permittivity mingle in an unpredictable way.
We now turn to the study of a reflection TDM setup in

which the sample is placed in front of a mirror, as shown
in Fig. 1(d). In this case, the field diffracted by the sample
in the k direction is given by Eq. (1), where Eref is the
field that would exist without the sample (i.e., the inci-
dent plus the reflected field) and G

↔
ðk; rÞp is the field ra-

diated by a dipole p in the presence of a mirror. For
simplicity, we assume that the mirror is placed at z ¼ 0.
If the mirror is perfect, the field radiated by the dipole p
at ðr‖; zÞ above the mirror is equal to the field radiated by
two dipoles p ¼ p‖ þ pzẑ at ðr‖; zÞ and p0 ¼ −p‖ þ pzẑ at
ðr‖;−zÞ in free space.
Noting α≈ as the cosine transform along the z axis of the

2D Fourier transform along the x and y axes of the po-
larizability density,

α≈ðkz; k‖Þ ¼
Z

dr‖

Z∞

0

αðrÞ cosðkzzÞ expð−ik‖:r‖Þdz; ð4Þ

the diffracted field can be written as

EdðkÞ ¼ eik0R

R
ðAf − þ BfþÞ; ð5Þ

f� ¼ α≈ðkz þ kincz ; k‖ − kinc
‖
Þ � α≈ðkz − kincz ; k‖ − kinc

‖
Þ; ð6Þ

A ¼ k × ðk × E0
‖
Þ; B ¼ E0

zk × ðk × ẑÞ: ð7Þ
Hence, contrary to the free-space configuration, the scat-
tered field is now related to two cosine-Fourier coeffi-

cients of the polarizability [11]. When the incident field
satisfies E0

z ≠ 0, the two cosine-Fourier coefficients are
easily deduced from the measure of two components of
the diffracted field (provided A and B are not collinear).
Varying kinc and k in 2π sr yields α≈ðνz;ν‖Þ for all ν, satis-
fying ν < 2k0, νz > 0. When s-polarized incident light is
used, E0

z ¼ 0. The retrieval of α≈ðνz;ν‖Þ is more difficult
but still possible. Indeed, for any reachable ν, we can find
k and kinc such that ðkz þ kincz ; k‖ − kinc

‖
Þ ¼ ð0;ν‖Þ and

ðkz − kincz ; k‖ − kinc
‖
Þ ¼ ðνz;ν∥Þ. Measuring one component

of the diffracted field for these specific incident and dif-
fracted angles yield α≈ð0;ν‖Þ − α≈ðνz;ν‖Þ. Performing an in-
verse cosine-Fourier transform of the latter permits
retrieval of the polarizability of the sample plus an un-
wanted Dirac contribution on the z ¼ 0 plane, which
can be easily discarded. Note that both methods neces-
sitate out-of-plane measurements. If only in-plane mea-
surements are performed (as in 2D configurations), the
separation of the two coefficients requires sending two
cross-polarized sets of incident light.

Once α≈ is retrieved from the scattered field, one can
reconstruct α (and the permittivity) by simply performing
a one-dimensional cosine transform in the z direction and
a 2D Fourier transform in the transverse plane. If a point-
like object is placed at ð0; 0; hÞ above the mirror, its re-
constructed image (or PSF) will be

Fmirrorðr‖; z; hÞ ¼ F iso

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
‖
þ ðz − hÞ2

q �

þ F iso

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
‖
þ ðzþ hÞ2

q �
: ð8Þ

Note that the PSF is no longer a convolution operator.
Yet, if the object is placed at one wavelength above the
mirror, the second term on the right-hand side becomes
negligible and one retrieves the isotropic PSF of the com-
plete configuration.

To illustrate our analysis, we simulate a TDM experi-
ment under transmission, reflection, and mirror-assisted
reflection configurations. The sample is a lossless dielec-
tric sphere (ϵ ¼ 1:01) containing two absorbing spherical
inclusions with permittivity ϵ ¼ 1:01þ 0:02i, as depicted
in Fig. 1(a). The far field diffracted by the sample placed
in free space or on a mirror is calculated rigorously and
corrupted with noise-to-signal ratio of 5% [14,16]. The
incident (respectively, diffracted) waves are sent (re-
spectively, detected) in a cone, with half-angle 70° corre-
sponding to NA ¼ 0:95. We use 64 incident plane waves
and 121 observation directions regularly spaced within
the incident and observation cones. All the incident plane
waves are s-polarized so that only one component of the
diffracted field needs to be measured (which simplifies
greatly the experimental setup). To retrieve the permit-
tivity map from the diffracted far field, one uses a recon-
struction procedure based on a conjugate gradient
algorithm with a scattering model assuming Born’s ap-
proximation [14]. This iterative technique accounts easily
for the redundancy or lack of data and permits skipping
the retrieval of α≈ from the data in the mirror-assisted
case. Note that our algorithm has been tested efficiently
against real data [17]. Figure 3 displays the real and

Fig. 2. (Color online) PSFs of the different TDM configura-
tions represented in Fig. 1 (NA is equal to 1 in all cases). (a)
Transmission. (b) Complete isotropic configuration. This plot
also represents the real part of the PSF in the reflection config-
uration and the PSF of the mirror-assisted reflection configura-
tion if the pointlike object is placed at one wavelength, at least,
above the mirror. (c) Imaginary part of the PSF of the reflection
configuration.
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imaginary parts of the reconstructed permittivity ob-
tained for the different configurations.
The transmission configuration is not able to distin-

guish the two inclusions owing to its poor axial reso-
lution. The reflection configuration yields strongly dis-
torted images, because it mixes the real and imaginary
parts of the permittivity. On the other hand, the mirror-
assisted reflection configuration gives reconstructions
that are similar to those obtained with a complete tomo-
graphy configuration [Figs. 3(g) and 3(h)]. The dielectric
sphere and the two absorbing inclusions are retrieved
with the accurate optogeometric values. Note that the ob-

ject is placed close to the mirror, i.e., in a region where
the global illumination hIi, which is obtained by aver-
aging over the incident angles the intensity of the station-
ary pattern created by the incident and reflected waves,
hIi ∝ 1 − J0ð2k0zÞ, is the most inhomogeneous. We have
performed several imaging experiments with the same
object moved away from the mirror by steps of λ=10
and obtained similar reconstructions. Of course, neglect-
ing the mirror in the inversion procedure yielded totally
distorted and striped reconstructions.

In conclusion, mirror-assisted reflection optical dif-
fraction tomography seems to be an efficient solution
for imaging label-free samples with high isotropic resolu-
tion. The experimental implementation is similar to that
of standard reflection TDM, except that the sample is
placed in the vicinity of a mirror. The important point
is to account for the mirror in the inversion procedure.
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Fig. 3. (Color online) Real and imaginary parts of the recon-
structed permittivity for (a) and (b) transmission setup, (c) and
(d) reflection setup, and (e) and (f) mirror setup (the sample is
placed at λ=10 above the mirror), (g) and (h) complete free-
space configuration.
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