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Abstract
In microwave or optical wave imaging set-ups, the measured scattered field is
usually not linearly linked to the target parameter of interest. To reconstruct
the latter, nonlinearized or linearized iterative inversion techniques, such as
the contrast source inversion method (CSI) or the conjugate gradient method
(CGM) have been proposed (Litman and Crocco 2009 Inverse Problems
25 020201–5). In this paper, we adapt to the three-dimensional vectorial case,
a hybrid method (HM) that combines the advantages of the CSI and CGM,
and compare the performances of the different approaches using microwave
experimental data. The HM appears to be the best compromise in terms of
reconstruction accuracy, computation time and robustness to noise.

(Some figures may appear in colour only in the online journal)

1. Introduction

During the past two decades, intense research activity has allowed the emergence of many
methods for solving inverse scattering problems in different areas of physics. The aim
of inverse scattering problems is to determine properties (location, shape and constitutive
material) of unknown targets from the knowledge of their response (scattered field) to a known
excitation. Generally, these problems are ill-posed and nonlinear. There exist several ways
to solve inverse scattering problems. Most popular strategies that address these problems are
iterative, e.g., starting from an initial guess, the parameter of interest is adjusted gradually by
minimizing a cost functional involving the measured scattered field data. We distinguish two
main approaches, linearized and nonlinearized techniques, depending on whether the field in
the scattering domain is considered as fixed (solution of the direct problem for the best available
estimation of the parameter) at each iteration step [2–5] or as an unknown that is obtained
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together with the parameter by the minimization procedure [6, 3, 7]. We present herein a
hybrid method (HM) that combines advantages of the two approaches and we investigate its
performances in the three-dimensional vectorial electromagnetic imaging framework. More
precisely, in our imaging configuration, the target is illuminated by an electromagnetic wave
and its scattered field is measured along many observation directions. The inverse problem
amounts to reconstructing the target three-dimensional permittivity from the set of diffracted
field maps obtained under various illuminations.

2. Formulation of the forward scattering problem

Let E0 be the electric field associated with an electromagnetic wave impinging on an arbitrary
object. The incident field induces a polarization inside the object. The macroscopic electric
field inside the object satisfies the self-consistent equation [8]

E(r) = E0(r) +
∫

V
G(r, r′)χ(r′)E(r′) dr′, (1)

where the integration is performed over the volume of the object. E(r′) is the macroscopic
field inside the object, χ(r′) is the linear susceptibility of the object:

χ(r′) = ε(r′) − εb, (2)

with ε(r′) the relative permittivity of the object, εb the relative permittivity of the vacuum, and
G(r, r′) the free-space electric field susceptibility tensor. To solve numerically equation (1)
we discretize the object into a set of N subunits arranged on a cubic lattice, and we assume that
the electromagnetic field and the field susceptibility tensor is uniform over one subunit. This
approximation is accurate enough to model the scattering of the electromagnetic wave by an
object as long as the subunit is smaller than the wavelength within the object and the radiative
reaction term is not needed. This latter condition is mandatory for instance when one deals
with optical forces [9, 10]. The macroscopic field at each subunit position may be rewritten as

E(ri) = E0(ri) +
N∑

j=1

G(ri, r j)χ(r j)d
3E(r j), (3)

where the free-space electric field susceptibility tensor is of the form [11]

G(ri, r j) = eik0R

[ (
3

R
⊗

R
R2

− I
) (

1

R3
− ik0

R2

)
+

(
I − R

⊗
R

R2

)
k2

0

R

]
− I

3
δ(R), (4)

where R = ri − r j, k0 is the wavenumber of the vacuum, d is the edge length of the lattice,
⊗

is the tensorial product and I is the unit tensor. The linear system represented by equation (3)
is solved numerically thanks to a bi-conjugate-type method [12, 13], and the scattered field at
any position r outside the object is computed using

Ed(r) =
N∑

j=1

G(r, r j)χ(r j)d
3E(r j). (5)

3. Formulation of the inverse scattering problem

The geometry of the problem investigated in this paper is illustrated in figure 1(a). Assume
that an unknown three-dimensional object is entirely confined in a bounded box � ⊂ R

3

(test domain or an investigating domain) and illuminated successively by l = 1, . . . , L

2
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Figure 1. (a) Sketch of the experimental set-up. The illumination is done on the (x, y) plane with
ϕi from 0◦ to 350◦ step 10◦. The polarization of the incident field is along the z-direction. The
receiver position ϕr from 20◦ to 340◦ step 40◦ and θr from −60◦ to 60◦ step 15◦. (b)–(f) are the
five different targets under study. (b) Two dielectric cubes of relative permittivity ε = 2.4 and
side a = 2.5 cm located at (a/2, a/2, a/2) and (a/2, a/2, 5a/2). (c) Two spheres in contact with
relative permittivity ε = 2.6 and radius r = 2.5 cm. The centers of the spheres are located at
(−r, 0, 0) and (r, 0, 0). (d) 27 spheres of radius a = 0.795 cm with relative permittivity ε = 2.6.
The 27 spheres are in contact and stacked into a cube shape. The center of the sphere in the
middle of the cube is (0, 0, 2a) cm. (e) A cylinder of radius a = 4 cm, length 2a with relative
permittivity ε = 3.05. (f) A cube of size a = 2.5 cm located at (−a/2, a/2, a/2) with relative
permittivity ε = 2.45 placed inside a cube of size 2a cm located at (−2a/5, 2a/5, 5a/3) with
relative permittivity ε = 1.45.

electromagnetic excitation E0
l=1,...,L. For each excitation l, the scattered field fl is measured on

a surface � at M points and located outside the investigating domain �. The aim of the inverse
scattering problem is to find the relative permittivity of the object from the measured scattered
field f.

In this section, the authors present four different iterative methods to solve this nonlinear
and ill-posed inverse scattering problem. The basic idea underlying iterative approaches to
solve the inverse scattering problem is, starting from an initial guess, to adjust the parameter
of interest gradually by minimizing some cost functional involving the data. For the sake of
simplicity, symbolic notation is introduced to represent equations (3) and (5),

Ed
l = BχEl, (6)

El = E0
l + AχEl . (7)

When varying the illumination E0
l , the matrices A and B do not change.

3.1. Conjugate gradient method

We first consider a linearized iterative inversion approach, the CGM, in which the internal
field is considered as an auxiliary variable. In the CGM [14, 15], the forward problem is
solved at each iteration step for the best available estimation of the parameter χ . Fields El

within the investigating domain � are thus considered as auxiliary variables and solely χ is
determined by minimizing an adequate cost function. A sequence {χn} is built up according
to the following updating relation

χn = χn−1 + andn. (8)

3
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The updated χn is deduced from the previous one χn−1 by adding a correction. This correction
is composed of two terms: a scalar weight an and an updating direction dn. Once the updating
direction dn is found, the scalar weight an is determined by minimizing the cost functional Fn

involving the residual error on the scattered field h(1) computed from the observation equation
(equation (6))

Fn(χn) =
∑L

l=1 ‖fl − BχnEl‖2
�∑L

l=1 ‖fl‖2
�

= W�

L∑
l=1

‖h(1)

l,n ‖2
�, (9)

where h(1) andW� are the residual error in the observation equation and a weighting coefficient,
respectively:

h(1)

l,n = fl − BχEl and W� =
(

L∑
l=1

‖fl‖2
�

)−1

. (10)

The subscript � is included in the norm ‖·‖ and later in the inner product 〈· | ·〉 in L2 to indicate
the domain of integration. The field El is the field that would be present in the investigating

domain � for the best available estimate of χ , i.e. El ≈ El,n−1 =
[
I − Aχn−1

]−1
E0

l .
Substituting the expression of the parameter of interest χn derived from equation (8) into
the cost functional described in equation (9) leads to a polynomial expression with respect to
the scalar coefficient an. Doing so, the unique minimum of the cost function Fn(an) is reached
for

an =
∑L

l=1

〈
h(1)

l,n−1|BdnEl,n−1

〉
�∑L

l=1 ||BdnEl,n−1||2�
, (11)

where updating direction dn is given by the standard Polack–Ribière conjugate gradient
direction.

3.2. Contrast source inversion method: (CSI)

Contrary to the CGM, the CSI method is an iterative nonlinear technique in which the
internal field is not fixed approximately at each iteration. The inversion problem is recast
as a minimization of a cost functional

Fn(χn, χnEl,n) = W�

L∑
l=1

‖h(1)

l,n ‖2
� + W�

L∑
l=1

‖χnh(2)

l,n ‖2
�, (12)

where h(2) and W� are the residual error in the near-field equation and a weighting coefficient,
respectively:

h(2)

l,n = E0
l − El,n + AχnEl,n and W� =

(
L∑

l=1

‖χn−1E0
l .‖2

�

)−1

. (13)

The unknown parameters in these inversion methods are χ and χEl , where χEl is the
polarization distribution within the investigating domain �. For more details on the CSI
method, see [7].

3.3. The HM

The HM combines the advantages of the CGM and CSI. It has been introduced for scalar
two-dimensional problems in [16–18]. In this paper, we extend it to the three-dimensional
vectorial case.

4
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The minimized cost function of the HM is the one used in the modified gradient
method [6]

Fn(χn, El,n) = W�

L∑
l=1

‖h(1)

l,n ‖2
� + W̃�

L∑
l=1

‖h(2)

l,n ‖2
�, (14)

where the weighting coefficient W̃� is given by

W̃� =
(

L∑
l=1

‖E0
l ‖2

�

)−1

. (15)

Two sequences related to the contrast χ and to the field inside the investigating domain �, El

are built up according to the following recursive relations

χn = χn−1 + bndn (16)

El,n = El,n−1 + av
l,nvl,n + aw

l,nwl,n, (17)

where vl,n, wl,n and dn are updating directions with respect to the total field El and to the contrast
χ , respectively. The scalar coefficients av

l,n, aw
l,n and bl,n are weights that are determined

at each iteration step n such that they minimize the normalized cost functional given in
equation (14). The minimization is accomplished using the Polak–Ribière conjugate gradient
procedure [19]. The originality of the HM lies in the introduction of two search directions
for the total field, wl,n, and vl,n which stem from the CGM and CSI methods, respectively.
Basically, wl,n fastens the retrieval of the internal field (especially if the data are not too noisy
and the target is not too contrasted) as in the CGM while vl,n brings the robustness to noise
and the stability when handling strongly diffracting targets as in the CSI. They are written as,

vl,n = gl,n;E + γl,n;Evl,n−1 with γl,n;E = 〈gl,n;E, gl,n;E − gl,n−1;E〉
‖gl,n−1;E‖2

(18)

wl,n = Ẽl − El,n−1 with Ẽl = (I − Aχn−1)
−1E0

l , (19)

where gl,n;E is the gradient of the cost functional Fn(χn, El,n) with respect to El , assuming
ξ = ξn−1 and η = ηn−1 (see appendix A for details). Note that, similarly to the CGM, one
forward problem has to be solved at each iteration.

To ameliorate the reconstruction, the authors have incorporated a priori information
stating that both real and imaginary parts of the electrical susceptibility χ are non-negative.
Instead of retrieving a complex-valued function χn, two real auxiliary functions ξn and ηn

are reconstructed such that χn = 1 + ξ 2
n + iη2

n − εb, with εb the relative permittivity of the
background. The real and the imaginary parts of the relative complex permittivity distribution
are, herein, forced to be greater than unity and non-negative, respectively. The recursive
relation with respect to the complex contrast function χn is refined as

ξn = ξn−1 + bn;ξ dn;ξ and ηn = ηn−1 + bn;ηdn;η. (20)

The updating directions dn;ξ and dn;η are taken to be the standard Polak–Ribière conjugate
gradient direction

dn;ξ = gn;ξ + γn;ξ dn−1;ξ with γn;ξ = 〈gn;ξ , gn;ξ − gn−1;ξ 〉
‖gn−1;ξ‖2

, (21)

dn;η = gn;η + γn;ηdn−1;η with γn;η = 〈gn;η, gn;η − gn−1;η〉
‖gn−1;η‖2

, (22)

where gn;ξ and gn;η are the gradients of the cost functional Fn(χn, El,n) with respect to ξ

(respectively η), evaluated at the nth step assuming that the total field inside the test domain
does not change (see appendix A for details).

5
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3.4. The positive conjugate gradient method: PCGM

Adding a priori information in the inversion procedure modifies significantly the reconstructed
image [20]. Thus, for the purpose of comparison we have also developed a CGM under a
positivity constraint. At each iteration, we now update ξn and ηn instead of χn.

ξn = ξn−1 + bn;ξ dn;ξ and ηn = ηn−1 + bn;ηdn;η, (23)

where dn;ξ and dn;η are the descent directions obtained from the cost function equation (9)

with El,n−1 =
[
I − Aχn−1

]−1
E0

l . The scalar coefficients bn;ξ and bn;η are determined such
that they minimize the normalized cost functional given in equation (9).

3.5. Parameter of interest

In all the presented methods, the sought parameter is the linear susceptibility χ given by
equation (2). Now, both the forward and inverse scattering problem can also be reformulated
using the local electric field instead of the macroscopic electric field [8]. In this case, the
parameter of interest sought would be the polarizability, α(r j) = 3d3

4π

ε(r j )−1
ε(r j )+2 as proposed in

[15]. We have implemented the two approaches and observed that they yielded similar results.
The main argument in favor of the use of the macroscopic field and the linear susceptibility
is that it is much easier to introduce the permittivity positivity a priori information with this
formulation.

4. Numerical experiments

To investigate the performances of the different inversion methods sketched in the first
section, we applied them to experimental data stemming from the microwave imaging set-
up described in the special section [1, 21]. In this imaging, the targets are illuminated by
an electromagnetic wave which can be assimilated to a plane wave. The scattered field
is measured at 81 points on a sphere enclosing the targets with regular angular steps
and with 36 incident directions taken in the (x, y) plane by rotating regularly over [2π ]
the emitting antenna about the z-axis. The background medium is homogeneous, εb = 1.
With this illumination and detection configuration, a single scattering analysis estimates the
resolution of the reconstruction to reach λ/4 in the transverse (x, y) plane and λ/1.8 in
the (x, z) and (y, z) planes, where λ is the incident wavelength [20]. We considered five
different targets, which are described in figure 1, and several incident frequencies from 3 to
8 GHz.

Prior to presenting the reconstructions obtained with the four different inversion methods
described in the first section, it is important to discuss their convergence behavior and the
stopping criterion. First, it is important to stress that the convergence of the three methods
is not ensured mathematically. Yet, because of the minimization process, the cost functional
of the CSI and HM are forced to decay at each iteration. Under some conditions, the CSI
functional has even been shown to exhibit only one local minimum [22]. On the other hand,
the decay of the cost functions of the CGM and PCGM is not automatic as the total field
inside � is estimated through a direct calculation, without minimizing the cost functional. We
observed that, in all the considered examples, the cost functions of the CSI, CGM and PCGM
had a similar behavior. After a certain number of iterations, they would decay slowly and
continuously without visible changes on the reconstructions. The HM cost function, on the
contrary, would rapidly reach a constant value which depended on the accuracy with which
the scalar coefficients bn, av

l,n and aw
l,n were optimized. We decided to stop the iterations of

6
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Figure 2. Reconstructed permittivity of the first target (two cubes along the z-axis) presented in
figure 1 obtained with the different inversion methods from data obtained at 4 GHz. The first
column corresponds to the CGM reconstruction; the second to the PCGM, the third to the CSI and
the fourth to the HM. The first line represents the relative permittivity in the plane (y, z) at x = 0;
the second line the relative permittivity in the plane (x, z) at x = 0 and the third line the relative
permittivity versus z for x = y = 0.

the CGM, CSI and PCGM when the reconstruction did not evolve significantly anymore,
while we stopped the HM iteration when the cost function reached the plateau. Note that, the
cost functions of these methods being normalized differently, we cannot use their values as a
stopping criterion.

5. Two cubes along the z-direction: figure 1(b)

The first considered target is made up of two small cubes placed along the z-axis, figure 1(b).
This simple object permits to test and validate the HM and to compare its performances to that
of the CGM, PCGM and CSI in terms of convergence and computation time.

5.1. At low frequency : 4 GHz

We first inverted the data obtained at 4 GHz. At this frequency, the interdistance between
the cube centers is about two third of the wavelength, which is above the single scattering
resolution limit in the z-direction. As expected, both CGM and PCGM, and CSI and
HM are able to resolve the two cubes, figure 2. Unsurprisingly, the results obtained with
the PCGM and HM which uses the permittivity positivity a priori information are better
than that given by the CGM and CSI which do not use this a priori information. With
these data, which present a high signal-to-noise ratio, it appears that PGCM is better than
the HM.

7
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Table 1. Time of computation to get the final image and number of iterations needed for the four
methods presented in this paper.

Frequency Method Number of iterations Time by iteration (mn) Total time (mn)

4 GHz HM 28 6.35 178
4 GHz PCGM 25 3.2 80
4 GHz CGM 200 0.91 182
4 GHz CSI 3000 0.72 2146
8 GHz HM 13 8.46 110
8 GHz PCGM 25 7.68 192
8 GHz CGM 200 1.2 240
8 GHz CSI 3000 0.83 2493

5.2. At high frequency: 8 GHz

We now study the data obtained at 8 GHz which exhibits a lower signal-to-noise ratio than
those obtained at 4 GHz [21, 20]. As expected, all four methods retrieve accurately the two
cubes. The PGCM and HM are once again slightly better than the CGM and CSI. However in
this case, the PGCM is not as good as the HM as it reconstructs small ghost objects outside
the targets and exhibits high permittivity peaks, whereas the HM reconstructed background is
perfectly equal to one and its reconstructed permittivity is close to the actual value. We have
observed in many examples that, with data presenting a high signal-to-noise ratio, the PGCM
was the most efficient technique for retrieving the object’s smallest details but that, on the
other hand, it was the least robust to noise.

5.3. Computation time

The computation is carried on a single Intel processor with 3.2 GHz clock speed. For the two
cubes’ target, we give in table 1 the number of iterations, the computation time per iteration
and the total computation time necessary to obtain the reconstructions plotted in figures (2) and
(3). We observe that the CSI is much slower than all the other approaches. Indeed, although its
iteration computation time is the smallest, as one does not need to solve any forward problem,
the number of iterations required to obtain a converged result is huge. On the other hand,
the CGM, PCGM and HM have a relatively long computation time for each iteration, but this
issue is largely compensated by the small number of iterations required for getting a converged
result. Actually, solving the forward problem, which used to be very time consuming, is now
performed surprisingly fast thanks to recent algorithmic progress [23, 12]. The CGM iteration
is faster than the PCGM and HM because it does not require one to optimize iteratively the
scalar coefficients of the recursive relations.

Note that for the CGM, PCGM and HM the iteration computation time increases with
illumination frequency. Indeed, the time required to solve the direct problem depends directly
on the object size with respect to the illumination wavelength. At 8 GHz, convergence of the
PCGM takes more iterations than at 4 GHz because of the lower signal-to-noise ratio. At this
frequency, the HM is the fastest method. The behavior of the residual error versus the iteration
is plotted for each method and for both frequencies in figure 4. We observe that, except for
the PCGM which is most sensitive to noise, the high frequency data yield a better residue
than the low frequency data. These curves are emblematic of the cost function behavior of
these methods. The HM residue quickly reaches a constant value plateau while the three other
methods decrease monotonically and slowly after a few iterations. We recall that one cannot
compare the values of the residues as each method has its own normalization.

8
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Figure 3. Same as in figure 2 but at 8 GHz.
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Figure 4. Behavior of the cost functional for the four different methods at 4 GHz and 8 GHz.
(a) CGM. (b) PCGM. (c) HM. (d) CSI.

We now turn to four other targets which are more difficult to invert as they are larger than
the wavelength of illumination or have a complex structure. Three of them, figure 1(c)–(e)
were in the database of the special section [1] and most methods failed to reconstruct them.
They permit us to investigate the performances of the techniques in terms of reconstruction
accuracy and robustness to noise.

6. Two spheres in contact: figure 1(c)

6.1. Two spheres in contact at 5 GHz

In this section we study two spheres in contact. This configuration is particularly difficult
as the contact is punctual and the two spheres form an object larger than the wavelength
of illumination for the frequency of 5 GHz. The CGM and PCGM fail to converge and the
reconstructions presented in figure 5 correspond to those obtained for the best residue, i.e. the
43rd iteration and 2nd iteration, respectively. This example highlights the main problem of the
CGM and PCGM, in which the cost function is not forced to decrease.
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Figure 5. Reconstructed permittivity map of the second target (two spheres in contact) depicted
in figure 1 obtained with the four inversion methods from data obtained at 5 GHz. First line
corresponds to the CGM; second line to the PCGM; third line to the CSI; fourth line to the HM.
First and second column : cut of the relative permittivity versus x for y = z = 0 and for y = 0 and
z = a/2, respectively. Third and fourth column: map of relative permittivity in the (x, y) plane for
z = 0 and z = a/2, respectively.

On the other hand, the CSI method, third line of figure 5, converges and it retrieves the
shape of the two spheres. Yet, the reconstructed relative permittivity is too high, especially
close to the contact point. Similarly, the HM gives a map of permittivity which roughly fits
the actual shape of the spheres while the permittivity at the contact point is not overestimated.

We have observed that if the frequency is increased up to 6 GHz, the HM fails to find the
object and only the CSI gives a meaningful result; and for frequencies above 7 GHz all the
methods fail.

6.2. Two spheres in contact: frequency hopping

To ameliorate the reconstruction, one can use the data obtained at different frequencies and
perform a frequency hopping procedure. At each frequency, the object’s initial estimate
introduced in the inversion algorithm is given by the reconstruction obtained at the preceding
(lower) frequency. Figure 6 presents the results obtained using the frequency hopping HM
for the sequence 3–8 GHz. We considered only the HM because the CGM and PCGM failed
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Figure 6. Same as figure 5 but the reconstruction is obtained with the HM via a frequency hopping
procedure applied to the data measured at 3–8 GHz. (a) Relative permittivity versus x for y = z = 0
and (b) for y = 0 and z = a/2. Map of relative permittivity in the (x, y) plane for (c) z = 0 and
(d) z = a/2.

to converge at 5 GHz and because the CSI method was much too long. It took 22 h for the
HM to reconstruct the spheres while we estimated the CSI time to be 9 days. We observe in
figure 6 that the HM combined with frequency hopping gives an accurate reconstruction of the
two spheres. With good initial estimates, the convergence issue for frequencies above 6 GHz
has disappeared. This example stresses the interest (in particular with respect to computation
time) and the robustness of the HM. Note that at 8 GHz the object size is about three
wavelengths.

7. Aggregate of 27 spheres: figure 1(d)

We now consider a complex structure made up of 27 spheres that are stacked into a cube and
illuminated at i.e. 8 GHz. At this frequency, the diameter of the spheres is roughly half the
wavelength. We observe that all the methods yield similar results, as shown in figure 7. In
agreement with the single scattering resolution analysis, the spheres are accurately resolved
in the (x, y) plane, while they are poorly visible in the (x, z) or (y, z) planes. Note that the
important noise at this frequency clearly causes the performance of the PCGM to deteriorate.

8. Cylinder: figure 1(e)

8.1. Cylinder at 3 GHz

Here we consider a cylinder larger than the illumination wavelength (at 3 GHz), figure 1(e),
and with high relative permittivity, ε = 3.05. Because of its size and high relative permittivity,
most inversion methods presented in the special section in [1] failed to reconstruct this target.
Satisfactory results were obtained only with a regularized CSI by using simultaneously all
the illumination frequencies [24] and with a regularized distorted Born approach [25] using
frequency hopping. Using solely the data at 3 GHz, we observe in figure 8 that the result
obtained with the HM is better than that obtained with the non-regularized CSI and the
PCGM, and is similar to the result obtained in [25] with regularized distorted Born. Note that
the CGM did not converge at 3 GHz and that all the methods failed to converge at 4 GHz.

8.2. Cylinder at 4 GHz: frequency hopping

Taking advantage of the HM’s short computation time, we applied the HM frequency hopping
algorithm to the [ 3, 3.5, 4 GHz] frequency sequence. In this case, the HM converged even at
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Figure 7. Reconstructed relative permittivity of the third target (27 spheres in a cube) depicted in
figure 1 obtained by the four inversion methods at 8 GHz. First column corresponds to the CGM;
second column to the PCGM; third column to the CSI; fourth column to the HM. Map of relative
permittivity in the (x, y) plane for z = 0 (first line), z = 2a (second line) and z = 4a (third line).
Fourth line: map of relative permittivity in the (x, z) plane for y = 0.

4 GHz and we obtained a better reconstruction than at 3 GHz, figure 9. This result is similar
to that obtained in [25] with regularized distorted Born under frequency hopping.

9. Inhomogeneous target at 8 GHz: figure 1(f)

In this last example, we consider an inhomogeneous object made up of two nested cubes,
a cube of ε = 2.4 set inside a cube of ε = 1.45. The small internal cube is slightly off
center. At, i.e., 8 GHz the largest distance between the edges of the internal and external
cubes is about λ/2.5 in the (x, y) plane, while the smallest distance is about λ/3.75. We
observe in figure 10 that the HM and PGCM are able to distinguish the change of permittivity
along the largest distance between the cube edges but fail to retrieve it along the smallest
distance. On the other hand, the CGM and CSI failed to retrieve the permittivity change
on both sides. This example highlights the advantage of injecting a priori information into
the reconstruction procedures to ameliorate the resolution. Note that, as usual, the PCGM
exhibits spurious high permittivity peaks that can be attributed to the high level of noise at this
frequency.
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Figure 8. Reconstructed permittivity of the fourth target (large cylinder) depicted in figure 1
obtained by the CSI (a,b,c), the PCGM (d,e,f) and HM (g,h,i) from data obtained at 3 GHz. The
CGM does not give any result for this target. Map of relative permittivity in the (x, y) plane at
z = 0 (a), (d) and (g); in the (x, z) plane at y = 0 (b), (e) and (h); in the (y, z) plane at x = 0 (c),
(f) and (i).
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Figure 9. Same as figure 8 but with the HM using frequency hopping from 3, 3.5 and 4 GHz. Map
of relative permittivity in the (x, y) plane at z = 0 (a); in the (x, z) plane at y = 0 (b); in the (y, z)
plane at x = 0 (c).
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Figure 10. Reconstructed relative permittivity of the fifth target (inhomogeneous cube) depicted
in figure 1 obtained with the four inversion methods at 8 GHz. First column corresponds to the
CGM, second column to the PCGM, third column to the CSI and fourth column to the HM. (a)–(d)
map of relative permittivity in the (x, y) plane at z = 10 mm; (e)–(h) relative permittivity versus
x for y = 10 mm and z = 15 mm; (i)–(l) relative permittivity versus y for x = −15 mm and z =
10 mm; (m)–(p) relative permittivity versus z for x = −15 mm and y = 15 mm.

10. Conclusion

In electromagnetic wave imaging, the field scattered by the target is usually nonlinearly
linked to the unknown permittivity map. We have adapted to the three-dimensional vectorial
case a hybrid inversion method that combines the advantages of nonlinearized and linearized
inversion techniques and investigated its performance with experimental microwave data. We
have shown that the hybrid method (HM) was dramatically faster than the nonlinearized
technique and significantly more efficient than the linearized techniques for reconstructing
large objects or for dealing with noisy data. Hence, we believe that the HM is an interesting
approach for electromagnetic digital imaging. It is particularly appropriate for performing
frequency hopping procedures (because of its short computation time) and for imaging in the
optical domain (where the data are often corrupted with an important noise).
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Appendix. Formulae for the gradients used in the HM and PCGM

The gradients used in the HM are the gradients of the functional

Fn(ξn, ηn, El,n) = W�

L∑
l=1

‖fl − B(1 + ξ 2
n + iη2

n − εb)El,n‖2
�

+W̃�

L∑
l=1

‖E0
l − El,n + A(1 + ξ 2

n + iη2
n − εb)El,n‖2

�. (A.1)

This cost function involves two residuals errors:

h(1)

l,n = fl − BχnEl,n and h(2)

l,n = E0
l − El,n + AχnEl,n, (A.2)

with χn = 1 + ξ 2
n + iη2

n − εb.
The gradients according to ξn and ηn are given by

gn;ξ = 2ξn−1Re

[
W̃�

L∑
l=1

El,n−1.A
†h(2)

l,n−1 − W�

L∑
l=1

El,n−1.B
†h(1)

l,n−1

]
, (A.3)

gn;η = 2ηn−1Im

[
W̃�

L∑
l=1

El,n−1.A
†h(2)

l,n−1 − W�

L∑
l=1

El,n−1.B
†h(1)

l,n−1

]
. (A.4)

The gradient according to El,n is given by

gl,n;E = W̃�

[
χn−1A†h(2)

l,n−1 − h(2)

l,n−1

]
− W�χn−1B†h(1)

l,n−1. (A.5)

In these three equations, the overbar denotes the complex conjugate and M† is the adjoint
operator of the operator M.
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