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Tomographic diffractive microscopy (TDM) is a label-free imaging technique that reconstructs the 3D refractive
index map of the probed object with an improved resolution compared to confocal microscopy. In this work, we
consider a TDM implementation in which the sample is deposited on a reflective substrate. We show that this
configuration requires calibration and inversion procedures that account for the presence of the substrate for
getting highly resolved quantitative reconstructions. © 2013 Optical Society of America
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1. INTRODUCTION
Tomographic diffractive microscopy (TDM) has recently
emerged from digital holographic microscopy (DHM) as a
powerful technique to reconstruct in 3D the map of relative
permittivity of the probed sample with a high resolution
[1]. Like DHM, it retrieves both the amplitude and the phase
of the field scattered by the sample, classically from the inter-
ference pattern produced with a reference beam, in an on-axis
arrangement or an off-axis one. Whereas in DHM the sample is
illuminated at normal incidence only, TDM additionally re-
quires to perform this detection successively for hundreds
of different illumination angles, which permits to obtain a
3D reconstruction and increases the resolution. TDM is also
known in the literature under other appellations, like syn-
thetic aperture microscopy, phase tomography, or optical
tomography. So far, this technique has been applied success-
fully for 3D samples mainly in the case of biological samples,
where the permittivity contrast is weak and linear approxima-
tions (such as the Born approximation) can be used to calcu-
late the scattered field [2–7]. In this case, the sample is
reconstructed by applying a linear inversion algorithm to
the set of data. The transverse resolution gain through the
multi-illumination measurement can then be quantified by
synthetic aperture generation: the equivalent numerical aper-
ture (NA) of the system becomes equal to the sum of the NA
used to collect the scattered field and the one defined by
the illumination angle range [8]. Resolutions beyond the
classical Rayleigh criterion have been obtained using this ap-
proach [1,3,6].

In most TDM implementations, the illumination and detec-
tion are operated from two opposite sides of the sample
(transmission configuration) and the sample is assumed to
be plunged in an homogeneous medium. This assumption is
valid when imaging biological objects deposited on a coverslip

and immersed in an index-match liquid. On the other hand, it
does not hold when considering samples coming from the
material science or the microelectronic domain, which are
generally obtained on nontransparent substrates. Moreover,
it has been shown theoretically [9] that the axial resolution
of TDM could be significantly ameliorated if the samples were
deposited on a highly reflecting substrate [9–11]. Hence, to
ameliorate TDM performances and enlarge its application do-
main, it appears highly desirable to adapt the experimental
mounting and the inversion procedures to the reflection
configuration.

Up to now, TDM in reflection has been essentially used to
recover qualitative two-dimensional (2D) super-resolved im-
ages of the sample reflectance [12–14], whereas our group
used it to retrieve quantitative super-resolved 2D profiles of
samples invariant along one of the transverse directions
[15–17]. In a recent letter by our group [18], we have shown
that, using an appropriate reconstruction procedure account-
ing for the presence of the substrate, TDM could yield the
three-dimensional (3D) permittivity distribution of samples
deposited on highly reflective substrates. In addition to pro-
viding 3D quantitative images, our iterative reconstruction
approach permitted to decrease by a factor of 10 the number
of illumination angles that are generally required for
Fourier-based inversion algorithms [18], thus disminishing
significantly the acquisition time. In this paper, we detail
the experimental mounting, the calibration procedures and
we describe different inversion methods adapted to reflection
TDM. We test our system on well-controlled subwavelength
resin nanostructures deposited on a silicon wafer.

The paper is structured as follows. Section 2 recalls the
basics of TDM and compares the principles of the standard
Fourier-based reconstruction procedure to that of our itera-
tive inversion algorithm. In Section 3, the experimental setup
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is described along with the normalization procedure that has
to be applied to the data in order to get quantitative results.
Last, Section 4 displays the reconstructions obtained with the
Fourier-based algorithm and that obtained with the iterative
procedure under various approximations.

2. BASICS OF TDM AND COMPARISON
BETWEEN THE CONVENTIONAL FOURIER-
BASED INVERSION PROCEDURE AND THE
ITERATIVE NONLINEAR
RECONSTRUCTION TECHNIQUE
Basically, TDM consists of recording the complex field
Es�k;kl� that is scattered by the sample in the k direction
when the illumination is a plane wave with kl wave vector.
This is done along M scattering directions k for L successive
illuminations kl accessible within the NA of the microscope
objective. These data are processed with an inversion algo-
rithm in order to get the 3D relative permittivity ε of the
sample.

At the core of any TDM inversion method is the interaction
model that links the scattered field Es�k;kl� to the sample
permittivity contrast χ with χ � ε − 1 if the sample is in air.
From Maxwell equations, one shows that the scattered field,
which is equal to the total macroscopic field Eminus the refer-
ence field Eref that would exist in absence of the sample,
verifies

Es�k;kl� �
Z
V
g�k; r0�χ�r0�E�r0; kl�dr0; (1)

where V is the sample support and g is the far-field Green ten-
sor, g�k; r0�p is the far field emitted in the k direction by a di-
pole p placed at r0 in the reference medium (which is defined
as the geometry without the sample). In general, the total field
E depends on χ so that the relationship between Es and χ is
nonlinear.

A. Fourier-Based Inversion Method
To reconstruct the sample, most TDM inversion procedures
are based on a linearized approximation of Eq. (1), the Born
approximation, which is obtained by assuming that the field
inside the probed object is close to the reference field. It is
valid for small and weakly contrasted samples, (χ ≪ 1). More-
over, the vectorial nature of the recorded field is usually over-
looked and the reference medium is assumed to be
homogeneous. With this scalar approach, the far-field Green
tensor can be assimilated to a simple Fourier operator,
g�k; r0�p ∝ exp�−ik · r0�p [1,3–6,8,14,19], and the reference
field to a simple plane wave, Eref�r;kl� ∝ exp�ikl · r�. As a con-
sequence, the scattered field can be written as

Es�k; kl� ∝ ~χ�k − kl�; (2)

where ~χ is the 3D Fourier transform of χ. Hence, for a given
illumination angle and for all the k wave vectors allowed by
the NA used for the detection, the scattered far field gives ac-
cess to the Fourier components of the permittivity contrast on
a cap of sphere centered on the extremity of vector −kl
[19,20]. Changing the illumination angle permits to shift this
cap of sphere in the Fourier space and measure different
Fourier components. Therefore, merging the data collected

for various angles enlarges the accessible Fourier domain.
This synthetic aperture generation enables a 3D recon-
struction of the object and ameliorates the resolution com-
pared to images obtained with classical confocal microscopy.
In practice, the measured scattered fields for a given k − kl are
added and averaged for reducing the experimental noise. Note
that extracting the scattered field from the measured total
field for k − kl ≈ 0 is usually not possible in the standard
experimental configuration as the scattered signal is over-
whelmed by the reference field. Then, the object can be recon-
structed in 3D by simply applying a 3D inverse Fourier
transform to the whole dataset. However, this approach typ-
ically requires hundreds of illuminations to fill the whole
accessible Fourier domain with fine enough discretization
steps for the Fourier transform to be accurate.

B. Nonlinear Iterative Inversion
To ameliorate the reconstruction procedure, we have devel-
oped an inversion method based on a rigorous vectorial mod-
eling of the field scattered by the object [18,21–24]. Our
approach does not assume that the field inside the sample
is close to the incident field and is adapted to a reference
medium with a reflecting substrate.

1. Formulation of the Forward Scattering Problem
The scattered far field satisfies Eq. (1) with a far-field Green
tensor that accounts for the interface [21]. To calculate the
total field inside the sample, one uses the self-consistent
integral equation [23],

E�r� � Eref�r� �
Z
V
G�r; r0�χ�r0�E�r0�dr0; (3)

where G�r; r0�p is the electric field at r emitted by a dipole
placed at r0 in the reference medium. When both r and r0

are above the substrate, it corresponds to the sum of the
free-space radiated field [25] and of the substrate reflected
field (which is computed via a quadrature [26]). The reference
field is also the sum of the incoming plane wave and its
reflected outgoing counterpart. Equation (3) can be solved
numerically using an appropriated discretization [23].

2. Formulation of the Inverse Scattering Problem
The iterative inversion procedure consists of retrieving
simultaneously the sample permittivity contrast χ and the
total field El in a bounded investigation domain Ω (outside
Ω, χ is assumed to be null) from the set of scattered field
data f l recorded on the far-field surface Γ for l � 1;…; L in-
cident directions. In most of the following examples,
Ω is located above the substrate and its lower boundary
lays at the air–substrate interface. Starting from an initial
guess, χ and El are gradually adjusted so as to minimize
some cost functional involving the measured data. For
the sake of simplicity, symbolic notation is introduced for
describing the far-field and self-consistent near-field integral
equations,

Es
l � B χEl; (4)

El � Eref
l � AχEl: (5)
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In Eq. (4), the volume integral is performed over Ω and
numerically solved by discretizing Ω into N subunits on a
cubic lattice with period much smaller than the wavelength
of illumination. The operator B is a 3N × 3M matrix includ-
ing the nine components of the far-field Green tensor for
each r in Ω and each k on Γ. The operator A is a 3N ×
3N matrix including the nine components of the near-field
Green tensor for each r and r0 in Ω. It is worth noting at this
point that solving the self-consistent near-field equation is
time consuming and may be impossible for large Ω.

For the present work we have used a cost functional that
reads (for iteration number n)

Fn�χn;El;n� �
P

L
l�1 ‖h

�1�
l;n‖

2
ΓP

L
l�1 ‖f l‖2Γ

�
P

L
l�1 ‖h

�2�
l;n‖

2
ΩP

L
l�1 ‖Eref

l ‖2Ω
(6)

� WΓ

XL
l�1

‖h�1�l;n‖
2
Γ �WΩ

XL
l�1

‖h�2�l;n‖
2
Ω; (7)

whereWΓ andWΩ are normalization coefficients, and h�1�l;n and
h�2�l;n are two residual errors for Eqs. (4) and (5), respectively:

h�1�l;n � f l − B χnEl;n; (8)

h�2�l;n � Eref
l − El;n � A χnEl;n: (9)

The minimization is performed with the hybrid gradient
procedure described in [24], which requires to solve one
forward problem at each iteration. The two sequences χ
and El are initiated by applying the complex conjugate trans-
posed matrix B to the dataset f l [26].

3. EXPERIMENTAL SETUP AND
PROCEDURE
A. Setup Architecture
We have developed a TDM setup based on a synthetic aper-
ture digital microscope working in reflection, presented in
Fig. 1 [27]. The linearly polarized light emitted at 633 nm
by a 10 mW helium–neon laser is divided into a reference
beam, passing through an electro-optic phase modulator
(PM), and a beam directed toward the sample. A rotating
mirror (M) permits to control the deflection of this latter
beam, while a beam expander (BE) and diaphragm (D) gen-
erate a wide collimated beam with near-homogeneous
power density. This beam illuminates the sample after trans-
mission through the microscope objective (OL) and the as-
sociated tube lens (L1). It can be locally assimilated to a
plane wave since the dimensions of the object are small
compared to the width of the beam. The center of the mir-
ror is conjugated with the center of the sample through the
BE, the tube lens, and the microscope objective. Thus, ro-
tating the mirror varies the incidence angle without shifting
laterally the illumination beam on the object. The polar an-
gle of the illumination can be varied over the whole NA of
the objective. The field scattered by the object is collected
by the microscope objective (Zeiss Epiplan-Apochromat
50×, NA � 0.95) and imaged on a CCD camera (Kappa
PS4-1020) after passing through relay lenses L2 and L3 to

obtain a global magnification of about 290. This provides
a very high sampling of 26 nm per pixel, that easily satisfies
the Shannon criterion even at half the Abbe limit (the Abbe
limit is here 0.5λ∕NA � 333 nm). After spatial filtering with
a pinhole (P) and collimation, the reference field is coher-
ently superimposed on the image field thanks to beam split-
ter BS3.

For each illumination l, the amplitude and phase of the
image field Eim

l are retrieved by phase-shifting interferom-
etry. Eim

l is detected on a plane conjugated with the micro-
scope object focal plane. Now, our nonlinear inversion
procedure requires the scattered far-field f l for all possible
k ∈ Γ. Thus, the measurements Eim

l have to be transferred
numerically to the far field with a 2D discrete inverse
Fourier transform. The directions of k that are close to
the specular reflection on the silicon substrate are dis-
carded, since the field scattered by the object is there
masked by the specular reflection. Note that what is effec-
tively measured at the image plane is a projection of the
vectorial image field on the polarization state of the refer-
ence beam, which is that of the illumination beam. Thus, the
minimization of Eq. (8) is performed for the projection of
the far field on this polarization state only.

B. Normalization Procedure of the Measurements
To retrieve a quantitative 3D permittivity map of the sample, it
is necessary to apply a normalization procedure to the ampli-
tude and the phase of the measured scattered field prior to
performing the inversion. The normalization is necessary to
correct the laser intensity fluctuations and the optical path
variation between the reference and illumination beams that
possibly occur when changing the illumination angle. In
classical TDM in free-space under Born approximation con-
figuration, the global relative phase and amplitude of the scat-
tered field f l under illumination l are set to match the
measurements obtained at illumination l − 1 by comparing
the far-field complex amplitudes obtained along the directions
k, k0, such that �k0 − kl−1� � �k − kl�, i.e., the same spatial fre-
quency in Eq. (2) for two successive incidences. In our spe-
cific configuration with a reflecting substrate, there is no
more overlapping domains in the Fourier space for comparing
the data. The latter are normalized so that the specular reflec-
tion on the substrate matches, at each illumination (both in
amplitude and phase), the theoretical specular reflection cal-
culated by the forward scattering model. This implies that the
specular reflection has to be far stronger than the field scat-
tered in the same direction by the sample, which is verified for
small objects.

Fig. 1. Sketch of the experimental setup: M, rotating mirror; BE,
beam expander; D, diaphragm; OL, objective lens; L1, tube lens;
L2;…;5, lenses; BS1;…;3, beam splitters; PM, phasemodulator; P, pinhole.
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1. Amplitude Normalization
The nonlinear inversion assumes that the object is illuminated
for each angle of incidence by a plane wave with unity ampli-
tude. The measured amplitudes ‖f l‖ have therefore to be nor-
malized according to this hypothesis so that a correct
estimation of the permittivity can be retrieved. It is performed
for each illumination l by multiplying f l by the factor Ml:

Ml �
jγljrlS

2πh‖Eim
l ‖iS

; (10)

where γl is the projection of the incident wave vector on the
optical axis of the microscope, rl the modulus of the substrate
Fresnel reflection coefficient for the incident polarization
state, S the surface of the field of view that can be imaged
on the CCD sensor. h‖Eim

l ‖iS is the mean field modulus aver-
aged over the field of view: as the object is small on the CCD
image, it can be considered as the mean field modulus re-
flected by the substrate. The multiplication by Ml ensures
that the maximal value of f l in the far field, which corresponds
to the specular reflection, is equal to that scattered by a
portion of substrate of surface S when illuminated by a plane
wave with unity amplitude, as calculated by the forward
scattering model.

Note that once the factorsMl have been calculated, the dig-
ital holograms Eim

l are multiplied by a filter function to get rid
of the field out of the region of interest containing the sample.
This further diminishes the speckle noise that is already
greatly reduced by the multi-illumination measurement.

2. Phase Normalization
In the forward model and the inverse procedure, the phase
origin is placed on the air–substrate interface and in the
middle of the transverse dimensions of the investigation
domain Ω. Now, the scattered far-field f l is obtained by 2D
Fourier transforming the image field Eim

l recorded at the im-
age plane. The transverse position of the phase origin (in the
image plane) can be chosen visually at the center of the sam-
ple while its axial position is that of the image plane. The latter
is generally not perfectly conjugated to the air–substrate inter-
face. Calling d � dzẑ the position of the plane conjugated
with the image plane with respect to the air–substrate inter-
face, the experimental phase φs�k; kl� of the scattered far field
measured along direction k for the incident wave vector kl
is linked to the phase φ0�k;kl� of the scattered far field ob-
tained when the image plane and the air–substrate interface
are perfectly conjugated by

φs�k;kl� � φ0�k;kl� � �k − kl� · d: (11)

The following section describes two methods enabling to re-
trieve dz. Once dz is determined, the scattered far-field phase
is corrected for each observation and illumination directions
using Eq. (11). Then, all the scattered phases φs�:;kl� obtained
for a given illumination kl are shifted by a constant so that the
recorded phase in the specular reflected direction matches
that of the theoretical Fresnel reflection coefficient (calcu-
lated with a phase origin laying on the air–substrate interface).
This procedure ensures that the phase origin of the incident
and scattered field corresponds to that chosen for the
forward model.

C. Determination of the Phase Origin
To retrieve the axial position of the sample plane with respect
to the image plane, dz, one applies a 3D inverse Fourier trans-
form (FT−1) to the dataset f l to get a rough estimation of the
object. Prior the Fourier transform, the data are normalized as
if dz was equal to 0. The sample plane being usually close to
the image plane (the interdistance remaining smaller than one
wavelength thanks to the high NA of the objective), the
reconstruction, although strongly distorted, is generally accu-
rate enough to pinpoint an approximate sample center. The
distance of the latter to the center of the reconstruction do-
main gives a first estimation of d. The Fourier transform is
then applied to the data normalized with the previously esti-
mated d. After a few iterations, the reconstruction is improved
and dz is better estimated.

Another technique, inspired by that described in [28], has
also been developed. We call f 0l the dataset for which dz
has been corrected,

f 0l � f l exp�−i�γ − γl�dz�; (12)

where γ is the projection of k on the optical axis. The problem
is stated as finding dz so that the backpropagation [26] of the
associated scattered field f 0l provides the best initial guess for
the inversion scheme. This is accomplished by minimizing the
cost function G,

G �
XL
l�1

‖f 0l − βB�B†f 0l�‖2Γ; (13)

where β is a complex scalar weight and B† the complex con-
jugate transpose of matrix B. This second approach is more
precise than the first one to estimate dz, but it is more time
consuming, especially for large investigation domains due
to the two matrix vector products with B in Eq. (13).

4. EXPERIMENTAL RESULTS ON OBJECTS
AT THE RAYLEIGH LIMIT
To illustrate the performances of our inversion approach, we
have imaged subwavelength resin objects deposited on a
silicon substrate. The test sample consists of four identical
resin cylinders centered at the corners of a square of side
400 nm, see Fig. 2. Note that 400 nm corresponds exactly
to the Rayleigh limit of our microscope (0.6λ∕NA �
400 nm). The diameter and height of the cylinders are 200
and 150 nm, respectively, and the relative permittivity of
the resin at 633 nm is about 2. The dataset is obtained by il-
luminating the sample with 20 incident directions, 10 belong-
ing to the plane of incidence �x; z� and 10 to the plane �y; z�,

Fig. 2. Test sample: subwavelength resin cylinders deposited on a
silicon substrate.
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see Fig. 2. For each plane of incidence, the polar angles range
from [−55° to 55°]. The linear polarization of the illumination
beam remains in the �x; z� plane for all incident angles.

In this section, different inversion procedures are applied to
the normalized set of data. Hereafter, for a fair comparison,
we display the cuts of the different 3D reconstructions on
the axial �x; z�, �y; z� and transverse �x; y� planes containing
the pixel of highest value.

A. Comparison of the Reconstructions Obtained with
the Linear Inversion (3D FT−1) and the Nonlinear
Iterative Inversion
We first use the classical linear reconstruction procedure that
consists of applying a 3D FT−1 to the dataset appropriately
placed in the Fourier space, see Fig. 3. The discretization
of the reconstruction is 53 nm and only the central part of
the reconstruction is shown. We observe that, in the trans-
verse plane, the four cylinders are hardly distinguishable
and are surrounded by strong artefacts while, in the longi-
tudinal plane, the axial profile of the cylinders is strongly dis-
torted. This poor reconstruction can be explained by the
numerous missing points in the Fourier space (to fill correctly
the Fourier space, several hundreds of illumination would be
required) and by the presence of the substrate, which is inter-
preted by the linear inversion as a mirror object, symmetri-
cally placed below the substrate, that mingles with the
original one.

We now turn to the “rigorous” iterative reconstruction tech-
nique described in Section 2. Prior to launching the inversion,
the size of the investigation domain Ω where the unknown ob-
ject will be reconstructed has to be determined. The trans-
verse dimensions of the domain can be easily inferred from
the image of the object on the camera. For its axial dimension,
a starting value can be obtained from the distorted reconstruc-
tion given by the 3D FT−1 inversion. Alternatively, it can also
be evaluated from the defocus of the image when the object is
translated along the optical axis (the depth of field of the ob-
jective is about 1 μm at λ � 633 nm). We use the a priori in-
formation that the sample is deposited on a substrate so that
the lowest boundary of Ω coincides with the air–substrate in-
terface. The discretization step of Ω is taken equal to 50 nm.

The first reconstruction is performed with a relatively high
and large investigation domain, see Fig. 4, then the size of Ω is
decreased, while keeping the same discretization, to increase
the data to unknowns ratio and improve the quality of the
reconstruction, see Fig. 5. One can see that the four cylinders
are perfectly resolved, with a good estimation of their width,

height, spacing distance, and relative permittivity. The slight
asymmetry of the reconstructions is due to residual speckle
noise and experimental uncertainties on the realization and
evaluation of the angular scanning. With the iterative inver-
sion method, twenty illuminations are sufficient to get an ac-
curate artefact-free image of the sample. We have checked on
several other samples that it provides an isotropic resolution
at the Rayleigh limit in the �x; y� plane.

B. Influence of the Substrate in the Nonlinear Iterative
Inversion
The significant amelioration brought about by the nonlinear
iterative inversion as compared to the classical 3D FT−1 linear
approach stems from several reasons. First, it constrains the
sample to be included in a given investigation domain which
permits to fill the eventual missing points in the Fourier space.
Then, it does not assume the Born approximation and per-
forms a rigorous calculation of the scattered field, which ac-
counts for the substrate following Eqs. (4) and (5). The price
to pay for this rigorous modeling lays in the computation ef-
fort, which is particularly important for calculating the matrix
A in the presence of the substrate and solve Eq. (5) for each
iteration in the inversion procedure. As illustration, the recon-
structions of Figs. 4 and 5 were obtained after 10 iterations,
respectively in 90 min with 10 GB of RAMmemory, and 25 min
with 5 GB of RAM memory, on a computer with a standard
processor.

It is therefore useful to perform the nonlinear iterative in-
version with approximate calculations of the scattered field,
both to get more physical insight into the origin of the
reconstruction improvement and to accelerate the procedure.

1. Inversion Assuming No Substrate
We start with the most severe approximation: the presence of
the substrate is ignored for calculating Eref , A and B, as if the

Fig. 3. Transverse cut (left) and longitudinal cut (right) of the modu-
lus of the 3D FT−1 of the dataset. Cuts are along the white dashed
lines.

Fig. 4. Transverse cut (left) and longitudinal cuts (top and bottom)
of the 3D permittivity map reconstructed with the nonlinear iterative
inversion in a quite large domain. Cuts are along the white dashed
lines.

Fig. 5. Same as Fig. 4 with a tightened domain.
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sample was surrounded by air, like in the 3D FT−1 approach.
In this case, the investigation domain Ω is taken symmetrical
with respect to the substrate plane (the plane at z � 0), to get
a configuration similar to the 3D FT−1 linear inversion. We ob-
serve in Fig. 6 that the reconstruction, while better than that of
the FT−1 approach, is strongly deteriorated as compared to the
rigorous inversion of Figs. 4 and 5. The four cylinders are not
resolved and artefacts pollute the image. Mirror images of the
cylinders can be seen symmetrically to the substrate plane,
but they have a much smaller permittivity as the silicon sub-
strate does not act as a perfect mirror. We have checked that if
Ω is taken just above the substrate, the reconstruction is even
more degraded.

2. Inversion Taking into Account the Substrate for Eref

A first improvement is to calculate Eref by taking the substrate
into account. This means that the object is illuminated by the
coherent superposition of the incident plane wave and its
specular reflection on the substrate. This straightforward cal-
culation is done without any computational effort in the algo-
rithm. The corresponding object reconstruction is shown in
Fig. 7. There are now far fewer artefacts and the four cylinders
are almost resolved. This improvement can easily be ex-
plained by noting that the field scattered by an object above
a mirror illuminated by a plane wave can be approximated by
the field scattered by two objects in the air, symmetrically
placed with respect to the mirror plane and illuminated by
two symmetrical coherent plane waves. Nevertheless, when
looking at the reconstruction into more details, the spacing
distance between the cylinders is not accurately retrieved
on the transverse cut of Fig. 7: it reaches 500 nm instead of
400 nm. Moreover, one can see on the bottom longitudinal
cut of Fig. 7 that the two cylinders are not perfectly separated.

We have again checked that taking Ω just above the substrate
further deteriorates the reconstruction.

3. Inversion Taking into Account the Substrate for Eref

and B
A further improvement consists of taking the substrate into
account also for calculating the far-field Green tensor B. This
operation is not time consuming as there exists an analytical
expression for the far-field operator [26]. In this case, the only
approximation concerns the near-field operator A, which is
calculated in free-space. Note that the investigation domain
is now again placed above the air–substrate interface.

We observe in Figs. 8 and 9 that the reconstruction is very
close to that obtained with the rigorous inversion (Figs. 4
and 5). The main difference concerns the relative permittivity
value, which is slightly overestimated when A does not take
into account the interface. Such a behavior has also been ob-
served on synthetic data in previous works [26]. It shows that
the influence of the interface in the estimation of the total field
inside the sample can be neglected in first approximation.
Now, in free-space the susceptibility tensors of matrix A
are analytical and yield a Toeplitz structure. This property per-
mits to speed up significantly the resolution of Eq. (5).

5. CONCLUSION
In this paper, we have described the implementation of a to-
mographic diffractive microscope able to get 3D quantitative
highly resolved images of samples deposited on an opaque
substrate. We have proposed a specific phase and amplitude
normalization of the data that ensures that the recorded scat-
tered far field match the simulations. Then, we have studied
the performance of a nonlinear iterative inversion method
based on various approximations of the forward model (with
or without substrate). We have shown that accounting for the
substrate is primarily important in the calculation of the

Fig. 6. 3D permittivity map assuming the sample is surrounded by air
(no substrate), with an investigation domain symmetrical with respect
to the substrate plane (z � 0).

Fig. 7. Same as Fig. 6 when the substrate is taken into account for
Eref only.

Fig. 8. Same as Fig. 4 when the substrate is taken into account for
Eref and B only.

Fig. 9. Same as Fig. 5 when the substrate is taken into account for
Eref and B only.
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illuminating field and of the far-field Green tensor. Finally, we
have demonstrated experimentally that our TDM setup is able
to retrieve the 3D quantitative permittivity distribution of sub-
wavelength transparent objects deposited on silicon using
only 20 different illumination angles. This achievement opens
new fields of application for TDM and paves the way toward
mirror-assisted isotropic resolution [9].
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