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Tomographic diffractive microscopy is a three-dimensional imaging technique that reconstructs the permittivity
map of the probed sample from its scattered field, measured both in phase and in amplitude. Here, we detail how
polarization-resolved measurements permit us to significantly improve the accuracy and the resolution of the
reconstructions, compared to the conventional scalar treatments used so far. An isotropic transverse resolution
of about 100 nm at a wavelength of 475 nm is demonstrated using this approach. © 2015 Optical Society of
America
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1. INTRODUCTION
Tomographic diffractive microscopy (TDM) is a powerful
technique that reconstructs in three dimensions and with high
resolution the refractive index map of the probed object [1]. It
is also known in the literature as synthetic aperture micros-
copy, phase tomography, or optical diffraction tomography.
Over the years, it has become more and more attractive, es-
pecially to study biological samples, since it provides at once
quantitative information, three-dimensional (3D) capability,
and high resolution, while remaining a label free approach
[2–11]. TDM typically consists in shining a collimated laser
beam on the object with different successive illumination an-
gles (usually several hundred), and detecting for each of them
the scattered far field both in phase and in amplitude. The re-
fractive index map (or permittivity map) of the object is then
reconstructed from the scattered field through a numerical
inversion procedure that relies on a scattering model describ-
ing the light–sample interaction. In most cases, this model is
oversimplified: the vectorial nature of the scattered field is
overlooked, and the permittivity contrast of the sample is as-
sumed to be low enough for a Born or Rytov approximation to
be valid. The link between the scattered field and the sample
permittivity contrast is then linear. Under these hypothesis
and assuming further that the sample lies in a homogeneous
infinite medium (oil or water), the image of the sample can be
reconstructed by Fourier transforming the data. With this
approach, the object spatial frequencies up to 2∕λ are theoreti-
cally accessible. The resolution, defined as the full width at
half maximum of the point spread function, can then go below
the conventional diffraction limit of λ∕2 and ideally reach λ∕4
[12]. However, although the resolution of TDM has been
shown to be better than that of bright field microscope [9] it
has never reached the ideal λ∕4 resolution limit [1,6,9]. A pos-
sible explanation is that the model used in the reconstruction

is not precise enough and that, when aiming at the best pos-
sible resolution, the vectorial nature of the field should be
accounted for.

We have recently developed a TDM in which the vectorial
scattered field is recorded and processed by an inversion pro-
cedure relying on vectorial calculations of the sample–wave
interaction. The image resolution obtained with the vectorial
data appeared much better than that obtained with scalar
data. In particular, an isotropic transverse resolution close to
λ∕4 was observed on nanostructured calibrated samples [13].

In this article, we detail the experimental mounting that
permits the recording of the vectorial data and the inversion
procedure that is able to process them. Then we describe the
important calibration procedures which are mandatory to
retrieve accurate and quantitative reconstructions. Finally
we demonstrate the importance of the field polarization on
the image resolution and accuracy on various examples.

2. EXPERIMENTAL APPARATUS AND
RELATED INVERSION PROCEDURE
A. Description of the Setup
The tomographic microscope we have developed is presented
on Fig. 1 [14]. It adopts a reflection configuration, so that it can
be used on objects deposited on a reflective opaque substrate.
Note that we have recently addressed the specific features of
this uncommon configuration [15]. The light source is a super-
continuum laser (NKT Photonics SuperK Extreme EXW-12)
filtered at 475 nm with a spectral width of 6 nm thanks to
a variable bandpass filter (NKT Photonics SuperK Varia).
The laser beam is linearly polarized and then divided into a
reference beam and a beam directed toward the sample. A fast
steering mirror (M, Newport FSM-300) permits control of the
deflection of this latter beam, while a beam expander (BE)
and diaphragm (D) generate a wide collimated beamwith near
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homogeneous power density. This beam illuminates the sam-
ple after transmission through the microscope objective (OL)
and the associated tube lens (L1). It can be locally assimilated
to a plane wave since the dimensions of the object are small
compared to the width of the beam. The center of the mirror is
conjugated with the center of the sample through the beam
expander, the tube lens, and the microscope objective. Thus,
rotating the mirror varies the illumination angle without later-
ally shifting the beam on the object. The polar angle of the
illumination can be varied over the whole numerical aperture
(NA) of the objective. The field scattered by the object is col-
lected by the microscope objective (Zeiss Epiplan-Apochromat
50×, NA � 0.95) and imaged on a sCMOS camera (Andor Zyla)
after passing through relay lenses L2 and L3 to obtain a global
magnification of about 290. After spatial filtering with a pinhole
(P) and collimation, the reference field is coherently superim-
posed on the image field with an off-axis arrangement thanks to
beamsplitter (BS3). Off-axis holography can then be performed
to retrieve the amplitude and the phase of the image field.

To carry out vectorial measurements of the scattered field,
two half-wave plates have been placed in the illumination and
reference arms (HW1 and HW2). They are used to generate
two polarization bases: horizontal and vertical directions, x̂
and ŷ, for the illumination arm; and along the two diagonal
directions, d̂1 � �x̂� ŷ�∕

���
2

p
and d̂2 � �x̂ − ŷ�∕

���
2

p
for the

reference arm. These four directions are all orthogonal to
ẑ, which is the unit vector along the optical axis of the micro-
scope. For an illumination polarized along x̂, successively
detecting the scattered field polarized along d̂1 and d̂2 permits
us to retrieve the vectorial scattered field. Indeed, thanks to
the microscope magnification, the propagation angles of the
Fourier components of the scattered field are so small in front
of the camera (well below 1°), that any polarization compo-
nent along ẑ can be neglected. Repeating this procedure for
an illumination polarized along ŷ, it is then possible to gener-
ate the vectorial scattered field for any linear polarization in
the �x̂; ŷ� plane.

In a classical TDM setup, the illumination and reference
beams have the same linear polarization, and only a projection
of the scattered field on this direction is measured. With our
full-polarized setup, getting the vectorial scattered field for
any linear polarization of the illumination requires four times
more data. The measurement procedure is therefore basically
four times longer but could be only twice longer using two
orthogonally polarized reference beams at once [16].

In this article, we investigate samples made of nanosized
resin blocks deposited on a silicon substrate. To improve
the sensitivity of the reconstructions, we perform a reference
measurement on the bare substrate. It permits us to measure
the specular reflected field for each illumination angle. By
subtracting it from the field measured in the presence of the
sample, only the scattered field part remains, and the speckle
noise generated by the illumination and the specular reflec-
tion is suppressed.

B. Inversion Procedure
In classical TDM, the inversion consists in applying a 3D in-
verse Fourier transform (FT−1) to the data set [1,3–11]. This
simplified approach is valid only if the following conditions
are met. First, the single scattering approximation is verified.
Second, the scalar approximation is valid. Third, the sample is
illuminated by a plane wave and surrounded by a homo-
geneous medium. We have developed an inversion algorithm
that overcomes all these limitations. It relies on the accurate
modeling of the scattered field Es with the coupled dipole
method (CDM) through the two following equations:

Es�k;kl� �
Z
V
g�k; r0�χ�r0�E�r0;kl�dr0; (1)

E�r;kl� � Eref�r; kl� �
Z
V
G�r; r0�χ�r0�E�r0;kl�dr0: (2)

kl is the wave vector of the lth illuminating plane wave, and k
is the wave vector along which the scattered field is detected
in the far field. The far field can be accessed in the setup
by transferring the field measured in the image space to the
Fourier space with a 2D inverse Fourier transform. The object
is represented by its permittivity contrast χ � ε − εb, where ε
is the relative permittivity of the object and εb that of the
surrounding medium, equal to 1 for the present samples
placed in the air. Eref is the reference field, the one existing
in the absence of the object. E is the total field, the sum of
Eref and Es. g andG are, respectively, the far field and the near
field Green tensors. g�k; r0�p is the far field emitted in the k
direction by a dipole p placed at r0 in the reference medium
(which is defined as the geometry without the sample).
G�r; r0�p is the electric field at r emitted by a dipole placed
at r0 in the reference medium. V is the volume of the sample.
Note that when all approximations used in classical TDM are
met, Eq. (1) becomes a simple 3D Fourier transform of χ.

Our iterative inversion algorithm has already been detailed
in previous publications [15,17], and only its main features are
recalled here. It simultaneously retrieves the sample permit-
tivity contrast χ and the total field El in a bounded investiga-
tion domain Ω (outside Ω, χ is assumed to be null) from the
set of scattered far field data f l, for l � 1; � � � ; L illumination
angles. The scattered far field is obtained on a far field surface
Γ delimited by the NA of the microscope objective. The vol-
ume integrals of Eqs. (1) and (2) are performed over Ω and
numerically solved by discretizing Ω into N subunits on a cu-
bic lattice with period much smaller than the wavelength of
illumination. For the sake of simplicity, symbolic notations
are used for Eqs. (1) and (2), which are restated as

Es;l � B̳χEl; (3)

Fig. 1. Sketch of the experimental set-up: M, rotating mirror; BE,
beam expander; D, diaphragm; OL, objective lens; L1, tube lens; L2;���;5,
lenses; BS1;���;3, beamsplitters; HW1;2, half-wave plates; P, pinhole.
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El � Eref;l � A̳χEl; (4)

where B̳ and A̳ are the operators for the far field and near field
Green tensors, respectively.

Starting from an initial guess provided by the backpropaga-
tion of the data set [18], χ and El are gradually adjusted at each
iteration so as to minimize a cost function involving the mea-
sured data. For iteration number n, the cost function reads,

Fn�χn;El;n� � WΓ

XL
l�1

‖h�1�l;n‖
2
Γ �WΩ

XL
l�1

‖h�2�l;n‖
2
Ω; (5)

whereWΓ andWΩ are normalization coefficients, and h�1�l;n and
h�2�l;n are two residual errors for Eqs. (3) and (4), respectively:

h�1�l;n � f l − B̳χnEl;n; (6)

h�2�l;n � Eref;l − El;n � A̳χnEl;n: (7)

The minimization is performed with the hybrid gradient
procedure described in [17].

3. NORMALIZATION PROCEDURE OF THE
DATA SET
A. Principle
The polarization-resolved measurement has to be processed
before providing the vectorial scattered field to the inversion
procedure. The normalization procedure aims at casting the
data in a form compatible with the assumptions used in the
inversion procedure. First, the sample is illuminated by plane
waves with unity amplitudes. Second, the phase origin for the
illuminating field and for the scattered field is placed on the
surface of the silicon substrate (the presence of the substrate
is indeed taken into account in the inversion algorithm).

Experimentally, the phase origin is never perfectly set on the
substrate. We have developed two methods to correct this
phase origin mismatch, which are detailed in [15]. Once the
phase origin is correctly placed, we compare the specular re-
flected amplitudes obtained at each illumination angle to the
theoretical reflection coefficient to correct the illumination am-
plitude fluctuations and the different phase delays introduced
on the illumination path when shifting from one angle to the
other. This approach is valid if the specular reflection is not
perturbed by the field scattered in the same direction by the
sample, which is verified for the small objects studied here.

In the full-polarized configuration, the polarization of the
illuminating beam can be initially along x̂ or ŷ. In the general
case, once the beam has been deflected by the fast steering
mirror to an arbitrary direction ki � sin θi cos ϕix̂�
sin θi sin ϕiŷ� cos θiẑ, where ϕi and θi are, respectively,
the azimuthal and polar angles of the illumination, the polari-
zation of the incident field Ei on the object can be decom-
posed into its S (TE) and P (TM) components:

Ei � − cos ϕiEiŝ� sin ϕiEip̂; (8)

where Ei is the complex amplitude of Ei, ŝ � ki × ẑ, and
p̂ � ŝ × ki. The specularly reflected field Er then becomes

Er � −rS cos ϕiEiŝ� rP sin ϕiEip̂; (9)

with rS and rP the reflection coefficients for S and P polar-
izations.

B. Normalization Factor
The field Eim imaged on the camera is measured along the two
polarization directions d̂1 and d̂2. Eim is the sum of the field
scattered by the object and the field Er reflected by the sub-
strate. For any illumination angle, it is possible to calculate
theoretically the value Eth

r · d̂p (p � 1 or 2) for the case
jEij � 1, as supposed in the inversion procedure. Note that
in the image space of the camera, thanks to the high magni-
fication, ŝ and p̂ can be considered in the �x̂; ŷ� plane.

To normalize both the modulus and the phase of the
data set, Eim;l · d̂p is multiplied, for each illumination l, by
the factor Ml:

Ml �
jγljSEth

r;l · d̂pe
−jφl

2πhjEim;l · d̂pjiS
; (10)

where γl is the projection of kl on the optical axis of the
microscope, and S the surface of the field of view that can
be imaged on the camera. φl is the phase that is measured
in the specular reflection direction. hjEim;l · d̂pjiS is the mean
modulus, averaged over the field of view, of the signal
detected on the camera for the lth illumination. The object
influence being limited to a small region of the image, it
can be considered as the experimental value of hjEr;l · d̂pjiS .

The multiplication by Ml ensures that the maximal value of
jEim;l · d̂pj in the far field, which corresponds to the specular
reflection, is equal to that scattered by a portion of substrate
of surface S when illuminated by a plane wave with unity am-
plitude, as calculated by the CDM in the inversion procedure.
This is the amplitude normalization part.

The phase normalization must guarantee that all the illumi-
nating plane waves have a common phase origin placed on the
substrate, as in the inversion algorithm. To experimentally
fulfill this condition, the phase of the detected field Eim;l ·
d̂p has to be shifted by a constant, so that the phase in the
specular reflection direction matches that of the theoretical
Fresnel reflection coefficient. This is exactly what is per-
formed through the multiplication by Ml.

Once this normalization has been carried out for each
polarization combination in the data set (x̂ d̂1, ŷ d̂1, x̂ d̂2, and
ŷ d̂2), it is possible to combine them to generate the vectorial
scattered field f l, for any linear polarization of the illumination
in the �x̂; ŷ� plane. The inversion procedure is then launched
with this vectorial data set.

4. EXPERIMENTAL RESULTS
A. Investigated Samples and Measurement
Configuration
In [13], we have shown that vectorial TDM transverse resolu-
tion is significantly better than that of classical bright- or dark-
field microscopes and also better than that of TDM using only
scalar measurements. It reaches 160 nm for a wavelength of
632.8 nm. Here, we aim at further improving the absolute
transverse resolution by using a wavelength of 475 nm, and
we investigate in more details the role of polarization and
the axial sensitivity.

To demonstrate the performance of our method and optical
setup, we fabricated different samples as shown in Fig. 2. All
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the samples are made up of resin rods (relative permittivity of
2) of width 100 nm, length 300 nm, and height 140 nm, depos-
ited on a silicon substrate. For the sample of Fig. 2(a) 12 resin
rods were placed radially at the summit of a dodecagon.
Hereafter this sample will be referred as the star sample.
The sample of Fig. 2(b) is a star with one missing branch, and
the sample of Fig. 2(c) has two of its branches misaligned in
comparison to the star sample of Fig. 2(a): one top-right diago-
nal branch has been rotated by 60° to become horizontal, and
one bottom-left diagonal branch by 30° to become vertical.
All samples were illuminated by eight directions of incidence,
defined by a fixed polar angle of 60° and an azimuthal angle
regularly spaced within 2π.

B. Reference Star Sample
We first present the experimental results obtained with the
star sample of Fig. 2(a). To point out the role of illumination
and detection polarization, we present in Fig. 3 the polarized
dark-field microscope images, obtained for each polarization
combination (ŷ d̂1, ŷ d̂2, x̂ d̂2, and x̂ d̂1) by summing the scat-
tered intensities recorded at the image plane for all the illumi-
nations. One notes that the dark-field image for each
polarization combination contains incomplete information
about the sample; only 10 spots can be seen instead of the 12
branches of the reference star. Yet the different polarization
combinations yield complementary information, since the

illuminated spots are different for each case. This emphasizes
the importance of full-polarized measurements in TDM for
achieving isotropic superresolution instead of relying on sin-
gle polarization illumination and scalar measurements.

The transverse dark-field full-polarized image of the star
sample is displayed in Fig. 4(a). It is the summation of the four
polarized images of Fig. 3, and their complementary informa-
tion content is highlighted since the 12 edges of the branches
can now be distinguished. Figure 4(b) shows a transverse cut
of the reconstruction obtained with a 3D inverse Fourier
procedure applied to the TDM measurements. It assumes
the data are scalar, and averages the results given by the four
polarization combinations. Figures 4(c) and 4(d) present re-
sults given by the iterative inversion algorithm. For Fig. 4(c),
the scattered field is scalar, projected on the polarization of
the illumination, and called the x̂ x̂�ŷ ŷ scalar data set. For
Fig. 4(d), the vectorial scattered field has been extracted from
the full-polarized measurement and used in the inversion
algorithm. To complete these results in 3D, Fig. 5 shows axial
cuts (yz cuts) of the reconstructions for the 3D inverse
Fourier procedure [Fig. 5(a)], the x̂ x̂�ŷ ŷ scalar inversion
[Fig. 5(b)], and the vectorial inversion [Fig. 5(c)]. For the 3D
FT−1 case [Fig. 5(a)], one notes that the axial reconstruction is
particularly distorted. This is due to the presence of the reflec-
tive substrate, not taken into account by this procedure, and
the small number of illumination angles [15].

The results of Figs. 4 and 5 show that the vectorial inversion
provides a significantly better transverse resolution, axial
sensitivity, and overall 3D permittivity map than the other
methods. In particular, it resolves the interdistance between
the branches at its smallest (100 nm) which is not the case
for the 3D FT−1 and dark-field images (Fig. 4). Moreover, com-
pared to the scalar x̂ x̂�ŷ ŷ inversion, it appears clearly that

Fig. 2. Scanning electron microscope images of the investigated
samples: (a) reference sample, 12 resin rods deposited on a silicon
substrate; (b) sample with one missing rod; (c) sample with two
misaligned rods.

Fig. 3. Dark-field images obtained for each polarization combination
in the data set: (a) ŷ d̂1 (corresponds to a polarization ŷ in the illumi-
nation path and d̂1 in the reference path); (b) ŷ d̂2; (c) x̂ d̂1, (d) x̂ d̂2.
The role of polarization in the resolution is clearly pointed out.

Fig. 4. Comparison of dark-field and different TDM reconstruction
procedures on the transverse image of the star sample: (a) Full-
polarized dark-field image. (b) Transverse cut along the center of
the full-polarized 3D FT−1 reconstruction (modulus shown) assuming
the data are scalar. (c) Transverse cut of the reconstructed permittiv-
ity averaged over the sample height using our inversion algorithmwith
a x̂ x̂�ŷ ŷ scalar data set. (d) Same with the vectorial data set. This
latter case is significantly better than the other techniques.
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the vectorial inversion is necessary to gain an isotropic and
sharper transverse resolution [Figs. 4(c) and 4(d)].

C. Sample with One Missing Branch
To pursue the demonstration of the efficiency of the vectorial
inversion, we consider a nonsymmetric star sample in which
a resin branch is missing [Fig. 2(b)]. The dark-field image
[Fig. 6(a)], 3D FT−1 [Fig. 6(b)], x̂ x̂�ŷ ŷ scalar inversion
[Fig. 6(c)], and vectorial inversion [Fig. 6(d)] results corre-
sponding to the sample are presented. Although the missing
branch is visible on all the images, the superiority of the vec-
torial inversion in terms of resolution and accuracy of the 3D
permittivity map is again clearly stated.

D. Sample with Misaligned Branches
Last, we investigate the efficiency of the different imaging
techniques in retrieving subtle angle misalignments between
the star sample branches [Fig. 2(c)]. The different reconstruc-
tions are shown in Fig. 7. The alignment defects remain practi-
cally invisible on the dark-field image [Fig. 7(a)] and the 3D
FT−1 reconstruction [Fig. 7(b)]. On the other hand, when the
iterative inversion procedure is used, these defects can be de-
tected. However, the vectorial inversion [Fig. 7(d)] provides
once again a significant better resolution than the x̂ x̂�ŷ ŷ

scalar inversion [Fig. 7(c)] and also an improved accuracy
to retrieve the misaligned branches.

5. CONCLUSION
In conclusion, we have detailed a full-polarized TDM which
enables us to reconstruct marker-free 3D samples with an
unprecedented isotropic transverse resolution (about 100 nm
for a wavelength of 475 nm). We have shown that using a full-
polarized data set is mandatory for obtaining this isotropic
transverse resolution, as well as to retrieve the geometry of
the samples with an improved precision. With an appropriate
calibration of the data and an inversion algorithm that takes
into account the vectorial nature of the scattered field, very
accurate permittivity maps of several complex samples have
been retrieved along the three dimensions. The ability of our
technique to discriminate very close geometries of samples
has been highlighted, which is very attractive for defect char-
acterization issues, for instance for nanotechnology compo-
nents. Moreover, this work paves the way toward 3D
isotropic superresolved tomography using a mirror-assisted
configuration [19].
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