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Nanometric resolution using far-field optical tomographic microscopy in the multiple
scattering regime
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The resolution of optical far-field microscopes is classically diffraction-limited to half the illumination
wavelength. We show experimentally that this fundamental limit does not apply in the multiple scattering
regime. We used tomographic diffractive microscopy at 633 nm to image two pairs of closely spaced rods (with
a width and interdistance of 50 nm) of widely different diffractive properties. Using an inversion algorithm
accounting for multiple scattering, only the pair of highly diffracting rods could be clearly visualized with a
resolution similar to that of an atomic force microscope.
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It is generally accepted that the resolution of far-field
optical imagers cannot fall below half the wavelength in the
observation medium, λ/2. This fundamental limit stems from
the fact that, for frequencies above k0 = 2π/λ, the Fourier
components of the diffracted field vanish exponentially as they
leave the object. Since these evanescent waves encode the high
spatial frequency components of the object, their detection
is the major challenge of optical imaging. The common
strategy of the various techniques that have permitted imaging
of nonfluorescent objects with a resolution well beyond the
diffraction limit consists in placing the object in the close
vicinity of a material probe. This probe can be a subwavelength
tip that is moved a few nanometers above the object, as
in near-field microscopy [1]. It can also be a structured
substrate, viewed as an extended probe, as in grating-assisted
microscopy [2,3] or in hyperlense microscopy [4]. In all these
cases, the super-resolution is explained by the phenomenon of
multiple scattering between the object and the probe. Basically,
the evanescent field radiated by the object is scattered by
the probe into propagative waves that are detectable in the
far field. Conversely, the incident propagative waves can
be converted by the probe into high-frequency evanescent
fields [2,5–7]. Multiple scattering can also take place within
an object made of highly diffracting material. Potentially,
such an object could act as a near-field probe for itself.
In this case, the question remains whether super-resolved
images could be obtained from its sole diffracted far field.
This fundamental issue has received particular attention in
the past five years [8–10] with mixed or even controversial
results due to its complexity. Generally, multiple scattering
is seen as a major drawback for imaging as it breaks the
linear link between the diffracted field and the object. In this
regime, meaningful images cannot be obtained analogically
and henceforth advanced inversion procedures are required.
The resolution of such numerically reconstructed images is
difficult to quantify as it depends on, among other factors, a
priori information on the object and the noise level [11–13].
Hence, there is still no clear demonstration that multiple
scattering can benefit the imaging process in the optical
domain.

In this work we show that, in the multiple scattering
regime, sub-λ/2 features of the sample can strongly modify the
diffracted far field. Tomographic diffractive microscopy can
take advantage of this phenomenon to obtain super-resolved
images. As a result, samples made of highly diffracting
material could be resolved well beyond the standard λ/2 limit.

We consider a reflection microscope in which the sample is
placed on a glass substrate and possibly illuminated under total
internal reflection (Fig. 1). For the sake of simplicity and for
illustrative purposes, we assume that the sample is invariant
along the y axis and is described by its permittivity contrast
ξ (x,z) = ε(x,z) − 1, which can be written as η(x)h(z), where
h(z) = 1 for 0 < z < H and 0 elsewhere. The sample is
illuminated by a s-polarized monochromatic plane wave (in
which the electric field is directed along the y axis) in
the (x,z) plane depicted by its x-component wave vector
αi = k0 sin θi , where k0 = 2π/λ and θi is the incidence angle.
From Maxwell’s equations, the total electric field E satisfies
the self-consistent integral equation [14,15]

E(x,z) − Eref(x,z)

−
∫

G(x − x ′,z,z′)ξ (x ′,z′)E(x ′,z′) dx ′dz′ = 0, (1)

where Eref is the field that would exist without the sample
and G(x − x ′,z,z′) denotes the field at (x,z) radiated by a
line source located at (x ′,z′) above the substrate. Both the
diffracted far field and the total field inside the sample can be
calculated from Eq. (1). If the sample is weakly diffracting,
one can assume that E ≈ Eref . This assumption is known as
the Born or the single scattering approximation. In this case,
straightforward calculations from Eq. (1) show [14] that, if
λ � H , the far field diffracted by the sample in the direction
specified by the x-component wave vector αd = k0 sin θd reads

e(αi,αd ) ∝ η̃(αd − αi), (2)

where η̃(α) is the Fourier transform of η(x). The linear
relationship between the object and the diffracted field given
by Eq. (2) is at the basis of most far-field imaging techniques.
Since |αi | < k0 and |αd | < k0, spatial frequencies α of the
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FIG. 1. Reflection microscope: Samples are deposited on a glass
substrate and illuminated through the substrate by an immersion
objective (IO). The backscattered field is collected by the same IO.

object that are accessible under single-scattering analysis
are contained in the interval � = [−2k0 2k0]. The frequency
limit 2k0, which is obtained for an imaging configuration
allowing grazing illumination and detection, corresponds to
the diffraction frequency limit (Abbe’s limit).

If the sample is strongly diffracting and multiple scattering
is present, the link between the diffracted field and the sample
is no longer linear. For example, assuming a double-scattering
process, the second-order development of the Born series of
Eq. (1) reads [14]

e(αi,αd ) ∝ η̃(αd − αi)

+
∫

B(αd,αi,α)η̃(α − αi)η̃(αd − α) dα. (3)

In this case one observes that the diffracted far field depends
on all the spatial Fourier components of the object permittivity
contrast. Hence, information on spatial frequencies of the
object beyond 2k0 could possibly be obtained in the far field if
the permittivity contrast is strong enough for the integral term
in Eq. (3) to be significant.

To illustrate this assertion, we have considered samples
defined by η(x) = 	ε(1 + u cos Kx)l(x), where l(x) = 1 for
−L/2 < x < L/2 and 0 elsewhere. When u is equal to zero,
the object is a homogeneous rod of width L, height H,

and permittivity contrast 	ε. When u = −1 the permittivity
contrast of this rod is modulated by a cosine with spatial
frequency K . From rigorous simulations performed by solving
Eq. (1) [15] we represent in Fig. 2 the angular behavior of
the intensity of the far field diffracted from homogeneous
and modulated rods. Calculations have been performed for an
illumination wavelength of 633 nm, L = 600 nm, H = 70 nm,
K = 5k0, θi = 50◦, and different permittivity contrasts 	ε =
2, 7, and 14. Note that the modulation frequency is larger
than twice the Abbe frequency limit. When the contrast is
small, the single-scattering approximation is valid and the far
field is accurately described by η̃. In this case, the intensities
of the homogeneous and modulated rods are identical. When
	ε increases, the difference between the homogeneous and
modulated rod intensities is strongly accentuated, showing
that high-frequency object modulations modify significantly
the diffracted far field. Imaging techniques accounting for
multiple scattering could thus take advantage of this far-field
signature for obtaining super-resolved images.

We have implemented a tomographic diffractive mi-
croscopy experiment in which the sample lies on a glass

FIG. 2. Computation of the far-field intensity diffracted by a
rectangular rod of width 600 nm and height 70 nm, when its
permittivity contrast is constant (solid line, inset 1) or modulated
by a cosine of spatial frequency K = 5k0 (dashed line, inset 2). The
insets represent the sample with η in gray scale. The illumination
wavelength is 633 nm and the incident angle is 50◦. Permittivity
contrast values are (a) 	ε = 2, (b) 	ε = 7, and (c) 	ε = 14.

cover and is illuminated through an oil immersion microscope
objective (Nikon ×40, numerical aperture NA = 1.3) with a
collimated laser beam of wavelength 633 nm (see Fig. 1).
The backscattered field is collected by the same objective
and measured in the rear focal plane using a phase-shifting
interferometry technique [11,16]. Far-field measurements are
carried out for 10 incidence angles θi and for about 700
observation angles θd distributed over the objective NA.

To retrieve the permittivity map of the sample from
the diffracted field, we use an iterative inversion scheme
accounting for multiple scattering, described in Refs. [16,17].
At each iteration step, both ξ and E are simultaneously
estimated within a box corresponding to the field of view W

of the microscope by minimizing a cost function F(ξ,E) of
the form [17]

F(ξ,E) =
∑

θi ,θd
|ρfar(θi,θd )|2∑

θi ,θd
|Emeas(θi,θd )|2 +

∑
θi

∑
x,z∈W |ρnear(θi,x,z)|2∑

θi

∑
x,z∈W |Eref(θi,x,z)|2 .

(4)

Emeas is the measured scattered far field, ρfar is the difference
between Emeas and the simulated far field for the estimates of
ξ and E, and ρnear is the left-hand side of Eq. (1) evaluated
with the same estimates of ξ and E. The minimization of ρnear

ensures that the field inside the sample is accurately computed
even when multiple scattering is present.

Like all inversion procedures, our reconstruction algorithm
assumes the finite extent of the object (indicated by the
investigating domain W ). Now, it is known that, if the sample
is bounded, images with infinite resolution can theoretically
be obtained from the diffracted far field even under the single-
scattering approximation because of the analycity of η̃ [18].
However, the inversion process, which consists in extending η̃

in the whole Fourier space from its known restriction in �, is
curtailed by the presence of noise [13]. Therefore, in practice,
it does not permit a significant improvement of the resolution
beyond the Abbe limit. Adding more a priori information
on the object is another way to improve the quality and the
resolution of the reconstructions [12]. Here, only the positivity
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of the object permittivity contrast is used in the algorithm. Yet,
this comment highlights the difficulty in assessing the origin
of the resolution improvement when numerical reconstruction
procedures are used inasmuch as the noise, the size of W, and
the amount of a priori knowledge all play a crucial role.

To overcome this issue, we have considered two samples
with the same topography but with different permittivities
so that one falls within the single-scattering approximation
whereas the other supports significant multiple scattering
(Fig. 3). The samples consist of two rods of a width of 50 nm,
a height of 25 nm, and a separation distance of 50 nm.
These dimensions fall far below the Abbe limit of the imager.
The relative permittivity of the highly scattering sample is
29.8 + i7.3, which corresponds to germanium at 633 nm, and
that of the low contrast object is 1.01. We have checked that
the permittivity losses play a negligible role with such object
dimensions. We first plot in Figs. 3(a) and 3(b) the modulus
of the field |E| within W obtained by solving Eq. (1) for
both samples with a total internal reflection illumination at
θi = −50◦. As expected, |E| is close to the reference field
modulus |Eref| for the weakly contrasted sample and very
different from |Eref| for the highly diffracting rods. In this latter
case, one observes a hot subdiffraction spot localized in one
rod. Varying θi induces a displacement of the spot within the
object. Unsurprisingly, the far field (not shown) diffracted by
the weakly scattering rods is very different from that diffracted
by the strongly scattering rods in shape, modulus (with one
being 2000 times higher than the other), and phase.

We display in Fig. 3(c) the reconstructed permittivity
obtained by the nonlinear inversion algorithm for the weakly
diffracting rods. The far-field data used in the inversion
procedure were simulated with Eq. (1) so that they were only
spoiled by numerical errors (discretization and truncature).
We stopped the inversion procedure when the minimized cost
function F reached a value about 1%. We observe that, even
without noise and with the a priori knowledge of finite extent
of the object and positivity of its permittivity contrast, the
reconstruction scheme fails in separating the two rods. We then
studied the case of the highly diffracting rods using the same
data simulation and inversion procedures. In this case, the two
highly diffracting rods could be clearly resolved (results not
shown). To confirm this result experimentally, measurements
were performed with the tomographic diffractive microscope
on germanium rods. The rods were fabricated by electron
beam lithography, coupled to reactive ion etching and lift-
off techniques, and characterized after the fabrication with
a scanning electron microscope. The experimental noise,
evaluated as the squared modulus of the relative difference
between the simulated and the measured diffracted fields,
reaches 39%. During the inversion, F did not decrease below
28%. Yet, the two rods could be easily separated on the
reconstructed map of permittivity [Fig. 3(d)]. For comparison,
we have plotted in Fig. 3(d) the atomic force microscope
(AFM) profile of the sample, which confirmed that both the
transverse and axial dimensions of the rods were accurately
retrieved. Figures 3(e) and 3(f) show the permittivity profile
along the white dashed line of Figs. 3(c) and 3(d), respectively,
and Fig. 3(g) presents the normalized modulus of the Fourier
transforms of these permittivity profiles, as a function of the
transverse spatial frequency in k0 units. While the object

FIG. 3. (Color online) Imaging of two rods (width = 50 nm,
height = 25 nm, and interdistance = 50 nm) in the single or multiple
scattering regimes. (a, c, e) The rods have a relative permittivity of
1.01. (b, d, f) The rods have a relative permittivity of 29.8 + i7.3
(germanium at 633 nm). (a, b) Map of the electric field modulus
|E| simulated inside the investigation domain W for an incident
angle of −50◦. (c) Permittivity map reconstructed from simulated
far-field data (where the solid white line is the actual height profile).
(d) Permittivity map reconstructed from the experimental data
obtained with the tomographic diffractive microscope (where the
solid white line is the experimental AFM height profile of the same
sample). (e, f) Permittivity profile along the dashed white line shown
in (c) or (d). (g) Normalized modulus of the Fourier transform of the
permittivity profile of (e) (dashed line) and (f) (solid line); spatial
frequencies are shown in k0 units; dotted vertical lines indicate the
Abbe frequency limit.

spatial frequencies are not retrieved beyond the Abbe limit
(dotted vertical lines) in the low-permittivity case (dashed
line), they are accurately estimated in an extended range up
to three times the Abbe limit in the high-permittivity case
(solid line). We believe that this achievement is due to the
multiple scattering phenomenon, which yields a selective
illumination of the rods depending on the incident angle,
as seen in Fig. 3(b). Actually, this subdiffraction light spot
that first focuses on one rod and then moves to the other is
quite similar to that which would be generated by a scanning
near-field probe [1]. This observation points out the major
issue of imaging techniques in the multiple scattering regime:
Their performances depend on how the internal field probes
the sample when the incidence angle is varied. In Fig. 4(a) we
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FIG. 4. (Color online) (a) Reconstructed permittivity map for two
rods spaced by 100 nm, with a width of 100 nm and a height of 50 nm.
(b) Modulus of the field |E| simulated when the rods are illuminated
at −50◦.

plot the reconstructed permittivity obtained from experimental
data of two germanium rods spaced by 100 nm, with width of
100 nm and a height of 50 nm (where the white line represents
the actual height profile). The simulated total field modulus |E|
in W displayed in Fig. 4(b) shows that, similarly to Fig. 3(b),
multiple scattering yields subdiffraction bright spots that are
likely to probe the fine details of the object. Yet, the total
field intensity averaged in W over all the incidence angles
is mostly localized at the top of the rods (result not shown).

As a result, the reconstructed permittivity is localized in this
region. However, it still provides accurate estimates of the
height, width, and interdistance of the rods.

Hence, with these highly diffracting samples, our approach
was able to distinguish rods heights of 25 and 50 nm, rod
widths of 50 and 100 nm, or rod interdistances of 50 and
100 nm. This achievement demonstrates that the power of
resolution of digital far-field microscopes in the multiple
scattering regime can be much better than the classical
Abbe limit provided inversion algorithms based on a rigorous
modeling of the wave-sample interaction are used. The quality
of the retrieved permittivity maps could be further improved
by using additional a priori knowledge of the sample [12]
and regularization terms in Eq. (4) [19]. The main issue is
that the resolution limit of this approach cannot be easily
defined as it depends both on the optical setup and on the
sample under study. Yet, we believe that this method could be
most interesting for imaging nanostructured devices like those
manufactured in the microelectronic domain.

The authors are profoundly grateful to Sonia Valls for her
contribution to the measurement campaign.
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