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Abstract In this paper, we study the performances of the Dipole Discrete Approximation

method for modelling the reflectivity of a highly resonant, 3D subwavelength patterned

structure extending over tens of thousands wavelength square. The computation time of the

whole reflectivity spectrum (80 wavelengths) was about 3 h on a computer and requires

about 1.5 GB in memory. These performances make the DDA an unique numerical tool for

modelling the scattering by large 3D structures supporting long-range interactions.

Keywords Numerical nodelling � Discrete dipole approximation � Subwavelength
scattering structure � Guided mode resonance

1 Introduction

The discrete dipole approximation (DDA), also known as coupled dipole approximation, is

a volume integral method based on the Green formalism that was first proposed by Purcell

and Pennypacker (1973) for studying the scattering of light by non spherical dielectric
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grains in free space. In this approach, the objects are defined as a perturbation of a

reference medium. The latter is generally a homogeneous medium (Purcell and Penny-

packer 1973) but more complex reference media have also been considered, such as

multilayers stacks (Rahmani et al. 1997) or even gratings (Chaumet et al. 2003; Chaumet

and Sentenac 2009). The main requirement of DDA is to calculate the Green tensor of the

reference medium, i.e. it requires the evaluation, at any point, of the field radiated by a

dipole placed, at any point, in the reference medium. Once the Green tensor is known,

DDA is particularly efficient for simulating the scattering from large inhomogeneous

objects as it requires only the meshing of the perturbation.

In this paper, we demonstrate the interest of the DDA by modelling the scattering by a

highly resonant non-periodical structure that supports long-wave ( hundreds of wave-

lengths) interactions. We consider a Cavity Resonator Integrated Filter (CRIGF) that is

made of a stack of dielectric layers on which is engraved a coupling grating surrounded

with two Bragg reflectors (see Fig. 1a). The coupling grating allows the in/out-coupling of

an eigenmode of the structure through one diffraction order, leading to a very narrow

resonance peak in the diffraction spectrum of the component. The two Bragg reflectors

prevent the eigenmode to spread out, thus leading to a high angular tolerance of the

resonance. The interest of infinite resonant coupling grating for laser applications and

narrow band filtering was suggested more than 30 years ago (Golubenko et al. 1985, 1986;

Mashev and Popov 1985). The first theoretical and experimental works on CRIGF

demonstrated their interest for laser stabilization (Buet et al. 2012) and narrow band fil-

tering (Kintaka et al. 2012; Buet et al. 2012) with focused beams: resonance peaks with

Fig. 1 a Geometry of the
structure under study (CRIGF).
b Reference medium that is
considered in the DDA. c Top
view of the modeled structure
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spectral width smaller than 1 nm at 850 nm with almost 80 % reflectivity with 11 lm
diameter focused incidence beam were obtained. The physic at the basis of the extraor-

dinary properties of CRIGF is under investigation. In particular, the large angular tolerance

of CRIGF is attributed to specific mode coupling, which can not occur in infinite grat-

ings (Rassem et al. 2015), that leads to a Fabry–Pérot-like resonance (Laberdesque et al.

2015). The numerical modelling of CRIGF requires a particular care since the structure is

hundreds of wavelength long, is extremely resonant, and is structured at the subwavelength

scale.

In Chaumet et al. (2016), we performed a successful comparison between four

numerical methods (Rigorous Coupled Wave Analysis, Finite Element Method, Finite

Difference Time Domain method and the Discrete Dipole Approximation) for simplified

CRIGFs which presented one axis of invariance and could be treated as two-dimensional

structures. DDA was the only technique that allowed the simulation of the three-dimen-

sional CRIGFs. In this paper, we aim at giving some more details about the implementation

of the DDA and provide an analysis of the convergence properties.

2 Structure

The structure under study is represented in Fig. 1. It is made of a central grating, playing

the role of an in/out coupling grating, with period dG ¼ 480 nm, holes width

aG ¼ 240 nm and number of periods nG ¼ 21. On each side of the central grating, two

Bragg reflectors with period dB ¼ 240 nm, holes width aB ¼ 120 nm and number of

periods nB ¼ 200 are engraved. The phase section d is 360 nm. All over the paper, the

relative permittivities of the cover and gratings holes are 1, and that of the gratings bumps,

waveguiding layer and substrate are respectively �b=2.13, �w=3.88 and �s=2.13. The

grating and waveguide thicknesses are respectively hg ¼ 120 nm, and hw ¼ 165 nm. The

structure is illuminated from the cover with a Gaussian beam, centered on the central

grating, with diameter 10.36lm at waist (1 / e beam diameter for the amplitude, see

subsection Incident Gaussian Field, below).

The definition of the reference structure is an important mandatory step when using

DDA formulation as it defines the meshing of the object. In this work, we considered

different multilayer stacks as reference medium. They are made of the same substrate,

cover and waveguiding layer as the structure studied, and the grating layer is replaced with

a planar layer with a permittivity �g (see Fig. 1b). The reference structure is infinite along

the x and y directions. Three possibilities for the value �g will be considered, �g equal to the

relative permittivity of the cover, to the relative permittivity of the grating bumps, or to the

geometric mean of the relative permittivity function of the grating.

3 Principle of the computation

3.1 Discrete dipole approximation

The discrete dipole approximation (DDA) was introduced by Purcell and Pennypacker

(1973) for studying the scattering of light by non spherical dielectric grains in free

space (Purcell and Pennypacker 1973). The object, seen as the perturbation of a reference

medium, is represented by a cubic array of N polarizable subunits with a meshsize d over
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which the incident and local electric field are assumed to be constant. Under this

assumption, the field located at the i-th subunit can be written as:

EðriÞ ¼ ErefðriÞ þ
XN

j¼1

Gðri; rjÞaðrjÞEðrjÞ; ð1Þ

where ErefðriÞ denotes the reference field at the position ri, G the green tensor (i.e. of the

reference medium) and aðrjÞ is the polarizability of the subunit j. aðrjÞ is derived from the

Clausius–Mossotti expression with the radiative reaction term which is essential to respect

the energy conservation (Draine 1988).

a0ðrjÞ ¼
3d3

4p
eðrjÞ � em
eðrjÞ þ 2em

ð2Þ

aðrjÞ ¼ em
a0ðrjÞ

1� 2
3
ik3ma0ðrjÞ

ð3Þ

where em is the permittivity of the reference medium at point rj and km its wavenumber.

Here, the structure is made of isotropic material. Hence, the relative permittivity and

subsequently the polarizability are both scalars. The reference field Eref represents the field

that exists in the reference medium, in absence of the object perturbation, when it is

illuminated with the incident field (the reference field contains the incident field).

Gðri; rjÞaðrjÞEðrjÞ represents the field radiated at ri, by the dipole aðrjÞEðrjÞ located at

rj, in presence of the multilayer reference medium, see Fig. 1b. The computation of G

presents some difficulties as the multilayer stack supports guided waves. Indeed, in this

case, the Sommerfield integrand, which is used to compute G, exhibits a pole. To obtain an

accurate evaluation of the integral without too many integration points, we took an inte-

gration path inside the fourth quadrant in the complex plane (Paulus et al. 2000). The

method used to perform the quadrature is a Gauss–Kronrod–Patterson method which

presents a nested quadrature rule and permits to increase the integration conver-

gence (Patterson 1968). The integration is evaluated with a prescribed accuracy g.
Formally, we derive the field amounts by solving the linear system

AE ¼Eref ; ð4Þ

where vectors E and Eref have length 3N and contain the induced electromagnetic field and

the incident fields, respectively. A is a matrix of size 3N � 3N which contains the Green

function with the polarizabilities. To solve Eq. (4) we use an iterative method called

GPBICG which is a refinement of the biconjugate gradient method (Tang et al. 2004), this

method is very efficient for the DDA (Chaumet and Rahmani 2009). For a given

approximate solution E� to Eq. (4), we define the residual as

r ¼kAE� � Erefk=kErefk: ð5Þ

The iterative process is terminated once r\� where � is a prescribed tolerance. Notice that

A has a Toeplitz block structure and then one can use fast Fourier transform to speedup the

product AE� in the iterative process (Flatau et al. 1990).

Once, Eq. (1) is solved, the scattered field EdðrÞ at an arbitrary position r exterior to the
object is given by,
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EdðrÞ ¼
XN

j¼1

Gðr; rjÞaðrjÞEðrjÞ: ð6Þ

An analytic expression of G in presence of the multilayer stack, Belkebir et al. (2005) is

used. When r is in far-field, the sum in Eq. (6) can be performed using a fast Fourier

transform (Chaumet et al. 2015).

3.2 Reference Gaussian beam

To specify the reference beam, we introduce the Cartesian basis (x̂,ŷ,ẑ) where ẑ is the axis
normal to the layers, x̂ is the periodicity direction of the gratings and ^indicates normalized

vectors. The reference field existing in the reference medium is obtained by shining the

multilayer stack with a normally incident ŷ-polarized Gaussian beam. We note

eðkk; zÞ expðikk:rkÞ the field at r ¼ rk þ zẑ, that is obtained when the multilayer stack is

illuminated by a monochromatic plane wave with wavenumber k0 defined as expðikk:rk �
iczÞŝðkkÞ where c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � k2k

q
and ŝ is the projection of ŷ onto the plane normal to kk þ cẑ.

With these definitions, the Gaussian reference field in the multilayer reads,

ErefðrÞ /
Z k0

�k0

Z k0

�k0

e�
k2kw

2
0

2 eðkk; zÞeikk:rkdkk; ð7Þ

where w0 is the waist of the Gaussian beam. This integral is performed using a Fourier

transform.

3.3 Green tensor

Even though we are using an efficient integration scheme to evaluate the Green tensor, it

takes a lot of time to evaluate it for all the different pair of points covering the object. Note

that due to the translational invariance of the reference medium in the (x, y) plane,

Gðr; r0Þ ¼ Gðjrk � r0kj; z; z0Þ. For each couple ðz; z0Þ, the number of pairs with different

distances of a Cartesian (x, y) mesh with nx � ny points is equal to

nxðnx þ 1Þ=2þ ðnx � nyÞny. To accelerate the computation, we approximated Gðjrk �
r0kj; z; z0Þ using an interpolation of a discrete set of points, Gðqd=nd; z; z0Þ with q ¼

1; . . .; int
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2y

q� �
and nd a natural number. Linear and polynomial interpolations could

not evaluate the Green tensor properly when jrk � r0kj=k � 1, as the fast decay of the

evanescent waves was not accounted for accurately. We obtained much better results using

rational functions, that is quotients of polynomials. Rational functions have the ability to

model functions with poles (Press et al. 1986) and permit an accurate approximation of the

1=r3 behavior of the Green tensor in the near field range.

4 Results

In this section, we display some convergence studies and computing cost. We evaluate the

reflectance spectra of the CGRIF for incident wavelengths varying from 787 to 795 nm.

Modelling of hundreds of wavelength long, highly resonant... Page 5 of 10 71

123



Otherwise stated, we took w0 ¼ 10:36 lm for the beam waist which corresponds

approximately to the beam size maximizing the reflectivity at resonance.

4.1 Study of the convergence of the CGRIF transmission versus the meshsize
d and the width ly

In this paragraph, the permittivity of the reference grating layer is equal to one. Thus, the

structure should be seen as a multilayer on which are deposited small prisms of glass in a

limited area. The reflection spectra is calculated for different meshsize (d ¼ 120 nm,

d ¼ 60 nm and d ¼ 40 nm) and different widths (ly ¼ 21dG, ly ¼ 31dG, ly ¼ 42dG) of the

structure along the y direction. We use as reference result the one obtained with the

smallest mesh size d ¼ 40 nm and the biggest width ly ¼ 42dG. In Fig. 2, we observe that

the position and shape of the resonance are accurately determined when d ¼ 60 nm and for

a width about 31dG.

To confirm this result, we consider a structure with 42dG-width and we plot the ratio of

the reflected plus the transmitted flux of the Poynting vector over the incident flux versus

the meshsize in Fig. 3. Note that the latter is not theoretically equal to one, even though the

materials are lossless, as some energy may be taken away by the guided wave if the

uncoupling is not complete (leakage of the guide mode through the Bragg grating).

However, for d ¼ 60 nm the ratio is close to 1 at 0.6% and for d ¼ 40 nm it is close to 1 at

0.1%. Then we can conclude that the meshsize d ¼ 60 nm is a good compromise between

precision and time of computation.

4.2 Influence of the permittivity of the reference grating layer

In this paragraph, we study the influence of the reference grating layer permittivity on the

convergence of the simulations. In a first study, we considered a homogenized value for the

permittivity of the reference layer, eg ¼ eh ¼ ðeb þ 1Þ=2, Fig. 4. In this case, the structure

matches that studied in the previous paragraph only in the grating area (see Fig. 1c) and it

cannot be obtained experimentally. In a second study, we took the permittivity of the

grating as reference value, eg ¼ eb. In this case, the structuration can be obtained by

drilling holes into glass layer, Fig. 5. Once again, this configuration matches that studied in

the previous paragraph only in the grating area. However, despite the geometrical
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Fig. 2 Reflectance spectra for
several values of the meshsize
and width of the CRIGF
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differences between these configurations, they should yield the same result as the incident

beam is focused onto the center of the grating and the total field decays rapidly at the edges

of the structured area. It is observed in Fig. 4 that the homogenized permittivity permits a
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Fig. 3 Ratio of the reflected plus
the transmitted flux of the
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faster convergence of the simulation as the spectrum obtained for 120 nm is significantly

more accurate (considering the centering wavelength of the peak) than that obtained when

the permittivity eg is one. This behavior can be explained by the fact that the mode of the

reference medium is closer to that of the actual structure so that the perturbation permit-

tivity contrast on the resonance wavelength is smaller. On the other hand, taking a ref-

erence permittivity equal to that of the grating bumps is clearly not a good solution as the

convergence is slower (see Fig. 5). Indeed, taking a reference medium with high permit-

tivity implies a faster oscillating Green tensor so that the assumption that it must be

constant within one subunit is more difficult to satisfy.

4.3 Computation time and memory requirements

In this last paragraph we investigate the computation time and the memory that are

required to deal with these large objects.

When the meshsize is decreased from 120 to 60 (40) nanometers, the number of

unknowns N is increased by a factor of 8 (27). We observe in Table 1 that, surprisingly, the

computation time increases less than the increase of unknowns. Now, the most time

consuming step in the algorithm is the iterative solving of the linear system (with pre-

scribed accuracy �) which is usually said to depend on N logN. Actually, this indication is

not precise enough : the inversion time depends also on the number of iterations. Keeping

the same number of unknowns, if the initial guess is close to the solution, the inversion will

be much faster than if the initial guess is far from the actual solution. In Fig. 6 we plot the

number of iterations versus the wavelength for different meshsize. In these calculations,

the initial guess at a given wavelength is the solution obtained for the previous wave-

length (Chaumet et al. 2008). For the first wavelength, the initial guess is the Born solution

(replacing E by Eref in the right hand side of Eq. 4). We observe that the number of

iterations is roughly the same whatever the wavelength for the meshsize 60 and 40 nm

while it varies with huge peaks for coarsest meshsize. Note that an iteration number about

2000 indicates that the inversion could not be obtained within the prescribed accuracy. A

possible explanation of the high number of iterations that is necessary with the 120 nm

meshing is that the field change from one subunit to its closest neighbour is more important

than the change obtained with 60 and 40 nm meshsize. This rapidly oscillating solution is

more difficult to obtain. This analysis shows that increasing the meshsize in order to

diminish the number of unknowns has to be done with caution. It also points out that, when

the meshsize is appropriate, there is no additional difficulty when the structure resonates.

We have also studied the computation time when the width ly is increased for a fixed

meshsize of 120 nm, see Table 2. Unsurprisingly, in this case the computation time

increases linearly with the number of unknowns (with the widths).

Last, we investigated the role of the inversion and Green tensor accuracies for a

meshsize d ¼ 60 nm and ly ¼ 42dG on the position of the resonance. We observed that �

Table 1 Computation time of the reflection spectrum (80 wavelengths from 787 to 795 nm) obtained with a

prescribed accuracy of g ¼ � ¼ 10�5, ly ¼ 42dG versus the meshsize d and memory needs for the computer

Meshsize (nm) 120 60 40

Computation time (s) 9400 47400 172000

Memory (GB) 1.3 4.5 13.5
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should be smaller than 10�3 and that the integration of the Green tensor should be per-

formed within an accuracy of g ¼ 10�4 at least. The interpolation is based on a four points

rational function with nd equal to 2 at least, see Table 3.

5 Conclusion

In conclusion, we have shown that the Dipole Discrete Approximation method is able to

simulate the diffraction by large highly resonant objects. We have studied the role of the

meshsize, reference medium, tolerance of the inversion and accuracy of the Green tensor

on the convergence of the simulation. We have observed that, with the appropriate

parameters, the computation time of the whole reflectivity spectrum (80 wavelengths) is

about 3 h on a computer and requires about 1.5 GB in memory for the lowest
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Fig. 6 Number of iterations
required by the inversion

scheme to obtain an accuracy � ¼
10�5 versus the wavelength for
different meshsize with
ly ¼ 42dG

Table 2 Computation time of the reflectivity spectrum with an accuracy of g ¼ � ¼ 10�5, d ¼120 nm
versus ly

ly 21dG 31dG 42dG

Computation time (s) 4300 6300 9400

Table 3 Magnitude of the resonance of the Green tensor (guided mode) and computation time for

d ¼ 60 nm, ly ¼ 42dG at k ¼ 791:3 nm, g ¼ 10�5 versus the number of subpixels points taken in the Green

tensor interpolation nd

nd 1 2 3 4 Rigorous

Magnitude of the resonance 0.4544 0.8825 0.8793 0.8795 0.8795

Time of computation (s) 16 33 49 66 37403

The ‘rigorous’ row corresponds to calculations performed without interpolating the Green tensor
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discretization. These performances make DDA the most efficient numerical technique, to

date, for simulating the far-field diffraction by large three-dimensional complex structures.
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