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The rigorous modeling of large (hundreds of wavelengths)
optical resonant components patterned at a subwavelength
scale remains a major issue, especially when long range
interactions cannot be neglected. In this Letter, we compare
the performances of the discrete dipole approximation ap-
proach to that of the Fourier modal, the finite element and
the finite difference time domain methods, for simulating
the spectral behavior of a cavity resonator integrated grating
filter (CRIGF). When the component is invariant along one
axis (two-dimensional configuration), the four techniques
yield similar results, despite the modeling difficulty of such
a structure. We also demonstrate, for the first time to the
best of our knowledge, the rigorous modeling of a three-
dimensional CRIGF. © 2016 Optical Society of America
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Much progress has been made during the last decades concern-
ing the numerical modeling of photonic components.
Numerous commercial or free numerical codes are now avail-
able, allowing modeling of photonic nano-structures. Yet, the
modeling of the long structures of several hundreds of wave-
lengths patterned at the sub-wavelength scale still remains a
challenge. A typical example of such a structure is the cavity
resonator integrated grating filter (CRIGF), composed of a cen-
tral sub-wavelength grating flanked with Bragg gratings, en-
graved on a multilayer stack of dielectric and non magnetic
materials. The central grating acts as an input/output coupler,
allowing us to excite a guided mode of the stack through one
diffraction order, while the Bragg gratings prevent the mode to
spread outside the structure. The excitation of the mode creates
an extremely narrow resonance peak in the reflectivity or trans-
mittivity spectrum of the component; the Bragg reflectors pro-
vide a huge angular acceptance, as compared to the infinite
coupler grating [1–3]. The CRIGFs are promising components

for filtering, source emission control, and extended cavity lasers
[4–6]. Yet, the CRIGFs are difficult to model, on one hand
because of their dimensions, as the lengths of the components
are at least 150 wavelengths, and the patternings are at the sub-
wavelength scale, but also because they are extremely resonant.
The first modeling was based on an approximate coupled mode
theory [7]. The rigorous numerical calculations reported in the
literature use the finite difference time domain (FDTD)
method [2,4] and Fourier modal method (FMM, also known
as RCWA) [8], applied to 2D structures only (invariant along
one direction). No numerical modeling for a three-dimensional
(3D) CRIGF has been reported yet, to the best of our knowl-
edge. In this Letter, we first present a comparison between the
reflection spectra obtained for a 2D CRIGF, made with four
different methods: the FMM [9], the finite element method
(FEM) [10,11], the discrete dipole approximation (DDA)
[12], and the FDTD method [13]. The four methods are in
very good agreement. Yet, all but DDA reach their limits in terms
of calculation time and memory resources. Hence, in the second
part of this Letter, we focus on the DDA and present the model-
ing of a 3D CRIGF. Our aim is to validate the different methods
and to demonstrate the possibility to model a 3D CRIGF.

The structure under study, together with a description of its
parameters, is represented in Fig. 1. It is composed of a central
grating acting as a coupler, flanked with Bragg gratings, deposited
on a waveguiding layer (silicon nitride, relative permittivity of
3.88, thickness of hw ) on a substrate (silica, relative permittivity
of 2.13). All the media are lossless dielectric materials. The cou-
pler grating and the Bragg gratings have the same depth hg and
are made of air and silica. The patterning is invariant in the y
direction. The choice of the parameters has been made according
to the following rules: the period of the Bragg grating dB must be
half that of the coupler grating dG so that the coupler grating
presents a resonance peak at a wavelength located in the bang
gap of the Bragg grating; the width of the hole of the Bragg gra-
ting aB must be one half of its period, ensuring the most efficient
Bragg reflection. The phase shift δ allows movement of the peak
across the range of wavelengths inside the bandgap of the Bragg
grating. We chose a phase shift leading to a peak near the middle
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of the Bragg bandgap, lying between 785.72 and 795.85 nm.
(The calculation was done with our FMM code for an infinite
Bragg grating replacing the CRIGF structuration in Fig. 1.) For
the infinite coupler grating, the resonance peak is centered at
791 nm, and its width is 2.4 nm, tunable thanks to the hole
width aG . The number of Bragg grating periods is chosen to
ensure a quasi-total reflectivity of the guided mode. The structure
is modeled with four different methods: FMM, FEM, DDA, and
FDTD. The FMM, FEM, and DDA represent homemade
numerical codes, while the FDTD code is the freeware
MEEP [13]. The four methods are based on different principles.
The FMM, FEM, and DDA solve Maxwell harmonic equations,
while the FDTD works in the time domain. The FEM, DDA,
and FDTD compute the electromagnetic field in the direct do-
main, while it is the Fourier domain for the FMM.

The FMM has been developed to model infinite gratings
periodic along two directions, with vertical walls. It was ex-
tended further on to model finite structures considered as
the basic cell of a periodic structure and using absorbing layers
or perfectly matched layers between each cell [14]. The appli-
cation of the FMM to model CRIGF is presented in [8]. To
model the structure of Fig. 1, 1401 Fourier orders (from −700
to 700) and 2.66 μm long absorbing layers were necessary. It is
obvious that the large length of the structure increases a lot the
calculation times of the scattering matrix as compared to
smaller structures. Yet, on the other hand, we take advantage
of the numerous diffraction orders of the structure to expand
the incident Gaussian beam on these orders. Thus, we are able
to calculate the response to a two-dimensional (2D) Gaussian
beam (invariant along the y direction) with only one calculation
of the scattering matrix per wavelength. The response to a 3D
Gaussian beam is done by calculating the scattering matrix for
several directions of the plane of incidence (from the �x; z�
plane to the �y; z� plane) and for each plane, by expanding
the beam on the numerous diffraction orders.

The main difficulty regarding the FEM formulation of the
present problem relies on the choice of the unknown field that
has to satisfy a proper outgoing wave condition. A relevant ap-
proach is to consider a planar reference structure composed of the
guiding layer and substrate only (the grating is removed). The
unknown field of our problem is then the difference between
the total (incident and diffracted) field solutions of the diffraction
problems when considering first the entire structure described in

Fig. 1 and, second, the reference structure. In that way, the prob-
lem is reduced to the calculation of the field radiated by the set of
rectangular rods of the structure put in the reference field.
Standard Cartesian PMLs adapted to the substrate, superstrate,
and guide were used to bind the computational domain and
absorb the field radiated from the rods. Details can be found
in [15]. Finally, the 2D Gaussian incidence is handled through
a plane wave expansion, thus requiring, by virtue of the linearity
of the Helmholtz operator, the resolution by the FEM only once
per wavelength. The mesh element typical size used for the com-
putation is λ∕�30� (where λ is the wavelength in the material),
which typically ensures at least three significant digits upon
energy related quantities. This problem has been implemented
in practice into FEM softwares distributed under the terms of
the GNU General Public License (GPL): Gmsh [16] for mesh
generation and visualization, and GetDP [17] as a FEM library.

The DDA is a volume integral method based on the Green
formalism [12,18]. The patterning is considered as a perturba-
tion on a planar reference structure. The reference structure
taken to model the CRIGF of Fig. 1 is the same as for the
FEM (the substrate and the waveguiding layer). First, the area
is discretized into cubic elements oriented along the x, y, and z
axes. This allows us to model structures patterned along two
orthogonal directions. Then the electric field inside the area
is computed solving a very large linear system iteratively with
the generalized product bi-conjugate gradient method with a
residual error of 10−5 [19]. Second, the field diffracted by
the structure is calculated using fast far-field calculation [20].

The reflection spectra calculated by the four methods are
represented in Fig. 2. For the FMM, FEM, and FDTD, the
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Fig. 2. (a) Comparison of the spectrum for the structure of Fig. 1
obtained with the FMM (black straight line), the FEM (blue dashed
line), FDTD (cyan straight line), and the DDA for 21dG (green
dashed-dotted line), and 42dG (red dashed line) along y.
(b) Zoom-in on the top of the peak.

Fig. 1. Parameters of the test structure with 1D patterning (invariant
along the y direction): dG � 480 nm, aG � 240 nm, δ � 360 nm,
dB � 240 nm, aB � 120 nm, hg � 120 nm, and hw � 165 nm.
The relative permittivity of the substrate, waveguiding layer, and grating
rectangular rods are 2.13, 3.88, and 2.13, respectively. The superstrate
and grating holes are air. There are 200 Bragg periods on each side and
21 coupling grating periods.
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structure considered is invariant along the y axis while the cal-
culation with the DDA is performed for a 21dG -long structure
along y, 42dG -long and 63dG -long structures (superimposed
with the 42dG curve, not shown here). The incident beam
is a normal incidence Gaussian beam with 10.36 μm diameter
at the waist, which corresponds approximately to the beam
waist maximizing the reflectivity at resonance. The Gaussian
beam is invariant along the y direction for the FEM and
FDTD (2D beam), while it is finite in the y direction (3D beam
with axis having a circular symmetry of the field modulus) for
the FMM and the DDA. It is polarized with an electric field in
the �y; z� plane (s polarization).

We observe that the four methods are in very good agree-
ment. It has to be noted that the calculation with the FMMwith
a Gaussian beam invariant along y gives a curve (not shown here)
which coincides with the FEM curve, as if the higher reflectivity
obtained with the FEM was due to the 2D Gaussian beam. On
the other hand, the slightly lower reflectivity given by the FDTD
method is due to the fact that it still has not fully converged,
despite the use of a 2.5 nm grid resolution, illustrating the mod-
eling difficulty of such resonant structures.

The possibility offered by the DDA to model a finite size
structure along y allows us to study the effect of the size of the
structure along this direction. It appears that a structuration
twice as large as the coupling grating length is sufficient to
ensure that the finite size has no impact on the reflectivity.

The larger spectral width obtained with the DDA may be
due to a slower convergence with respect to the discretization
step. The curve of Fig. 2 is calculated with a 60 nm step size. As
shown in Fig. 3, a 120 nm step size gives a much larger peak
centered at a smaller wavelength, while the peak obtained with
a 40 nm step size is thinner than with a 60 nm step size, and
nearly as thin as that obtained with the FMM.

The calculation time and the memory size required by the
four methods are of the same order of magnitude (a few minutes
per wavelength and a few gigabytes). Yet, with the FMM, FEM,
and FDTD, the modeled structure is invariant along the y di-
rection.We estimated that the modeling of the 42dG-long struc-
ture (whose size is 133 wavelengths along x and 25 wavelengths
along y) would require 14 days per wavelength and more than

1800 GB for the FMM, 1000 days and 220 GB for the FDTD
for the whole spectrum, and 14 h per wavelength and 2577 GB
for the FEM, although it requires only 15 min per wavelength
and 4 GB for the DDA.

In the following, we use the DDA only to model a 3D
CRIGF. A 2D patterning with identical patterning along the
two directions will ensure the independence of the spectrum
with respect to the incident polarization under normal incidence.
The parameters of the modeled structure are shown in Fig. 4.
The parameters of the stack of layers and the grating thickness
are the same as that of the 2D structure, and the period of the
grating. The bump width was chosen so that the resonance peak
obtained for the infinite coupler grating has a centering wave-
length (790 nm) within the Bragg bandgap and a width bellow
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Fig. 3. Convergence of the DDA with respect to the step size:
120 nm (blue dashed-dotted line), 60 nm (red dashed line), and
40 nm (cyan straight line). The FMM curve (black straight line) is
plotted for comparison.

Fig. 4. Parameters of the structure studied with 2D patterning, top
view (the layers below the grating are the same as for the structure of
Fig. 1): dG � 480 nm, aG � 120 nm, δ � 120 nm, dB � 240 nm,
and aB � 120 nm. The patterning is the same along x and y. There
are 200 Bragg periods on each side and 21 coupling grating periods.
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Fig. 5. Spectrum of the structure of Fig. 4 calculated with the DDA:
reflectivity (black straight curve), transmittivity (red straight curve), and
the sum of reflectivity and transmittivity (dotted blue curve).
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1 nm (0.57 nm). Each point of the spectrum needs one hour of
computation with roughly 2 × 107 unknowns for the linear sys-
tem to solve. (The code is not parallelized.)

The reflectivity (black straight curve), transmittivity (red
straight curve), and the sum of reflectivity and transmittivity
(dotted blue curve) with respect to the incident wavelength
are presented in Fig. 5 for an incident electric field lying in
the �x; z� plane. As expected, the same curve is obtained for
the orthogonal polarization (not shown here). The Gaussian
beam is 10.36 μm diameter at the waist, as for the 2D
CRIGF. We also calculated the reflectivity for the same com-
ponent but with δ � 360 nm (instead of 120 nm). We ob-
tained a peak centered almost at the same wavelength. This
quasi-invariance of the peak position when the phase shift
length is increased with the length of one period of the
Bragg grating has already been observed for 2D CRIGF [2].

We observe in Fig. 5 that the reflectivity at resonance (64%)
is smaller than for the 2D case, and that the losses reach 9%. As
the media are lossless materials, the losses correspond to energy
that escapes from the device through its edges. In Fig. 6, we
show a map of the electric field in the �x; y� plane at resonance.
The black straight lines show the outline of the Bragg and cou-
pling gratings. The edges of the map are the edges of the device.
We observe that the mode escapes out of the patterning at its
entrance into the Bragg grating. In this Letter, we conclude that
the laying out of the Bragg grating as shown in Fig. 4 is ob-
viously not the most suitable to enhance the reflectivity at res-
onance. Bragg grating presenting, for example, a circular shape,
as was done experimentally in [21], may be more suitable.

To sum up, we applied four numerical methods based on
four different principles (F modal method, FEM, FDTD
method, and DDA method) to calculate the reflectivity spec-
trum of a 2D CRIGF (invariant along one direction). The com-
parison shows an excellent agreement, thus validating the four
methods for the modeling of 2D CRIGF. While these four
methods (and probably other numerical methods not consid-
ered here) are able to tackle the 2D CRIGF problem, the DDA
is the only one (among the four methods presented here) able
to treat the 3D CRIGF. We believe that the possibility to
model 3D CRIGF opens the way to numerous numerical stud-
ies, which are necessary to make the best design of 3D CRIGF
(for applications requiring polarization independent compo-
nents, for instance), or even 2D CRIGF taking into account
the finite size effects.

Funding. Agence Nationale de la Recherche (ANR);
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Fig. 6. Modulus of the electric field (incident plus reflected) for the
structure of Fig. 4 at resonance (λ � 789.3 nm) calculated with the
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