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Abstract

The discrete dipole approximation (DDA) is a method of choice for simu-

lating the electromagnetic scattering by objects of arbitrary shape and permit-

tivity. To recover the field inside the object, it requires the iterative solving

of a dense linear system which can be time consuming. To ease this task, we

propose to start the inversion with the solution of the recently introduced scalar

approximation [Chaumet et al. J. Opt. Soc . Am. A, 39, 1462 (2022)]. This

initial guess allows a reduction of the time required for the solving of the linear

system up to 50%. In addition, we study the interest of preconditioning the

system to accelerate convergence. We show that the gain can be up to a factor

of 5, especially for homogeneous objects on a plane substrate.

Keywords: Scattering; Discrete dipole approximation; Iterative method,

preconditioner;

1. Introduction

Simulating the interaction of an electromagnetic field with a three dimen-

sional object of arbitrary shape and relative permittivity is mandatory in many
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areas of photonics and surface science. There exist various techniques for

solving Maxwell’s equations in a complex environment in the time-harmonic5

regime [1, 2], including the finite element method (FEM), the multiple multi-

pole method (MMP), the fast-multipole method (FMM), the method of mo-

ments (MoM) and the discrete dipole approximation (DDA).

In this article, we focus on the DDA, which is particularly adapted to the

study of the light scattered by clusters of possibly anisotropic particles of arbi-10

trary shapes [3, 4, 5, 6]. Reviews on the potentiality of DDA can be found in

[7, 8], and many DDA codes are freely available on the net [9, 10, 11].

The DDA can be described as a two step process. The first step, which is

the main bottleneck of the approach, consists in estimating the field existing

inside the object by solving a self-consistent equation discretized into a dense15

linear system. The second step consists in computing the scattered field at the

required observation points. The second step has been solved recently with a

Fourier based method which permits a significant reduction of the computation

time [12]. For the first step, combining the use of Fourier transforms (FFT) for

the matrix vector products (MVP) [13] and iterative solvers [14, 15, 8, 16], has20

permitted to accelerate this calculation. Yet, for large objects, the computation

time of the MVP becomes important and any means for reducing the number

of iterations of the solvers is welcome. To this aim, different implementations

of the DDA were investigated [17, 18]. Thus, using the filtered coupled-dipole

technique [19, 20] or the integration for the Green tensor [4, 21] instead of the25

default point-dipole formulation was shown to reduce the number of iteration.

In this work, we will investigate two additional techniques for accelerating DDA

simulations: starting the iterative process with an initial guess as close as pos-

sible to the actual solution and preconditioning the linear system.

2. Principle of the DDA30

The discrete dipole approximation (DDA) was introduced by Purcell and

Pennypacker in 1973 [22]. Since the DDA is a well known method [3, 13, 23,
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4, 16], we shall outline only its main features. The object under study is rep-

resented by a cubic array of N polarizable subunits. The field at each subunit

can be written:35

E(ri) = Eref(ri) +
N

∑

j=1

G(ri, rj)α(rj)E(rj), (1)

where Eref(ri) is the field at the position ri in the absence of the scattering

object, G is the dyadic tensor associated to the free space [24] or a multilayer

system [25]. α(rj) is the polarizability of the jth subunit. We use the polariz-

ability of the Clausius-Mossotti relation with the radiative reaction term given

by Draine [3]:40

α(rj) =
α0(rj)

1 − (2/3)ik3
0α0(rj)

, (2)

where α0 holds the usual Clausius-Mossotti relation α0(rj) = a3(ε(rj)−1)/(ε(rj)+

2). Equation (1) can be written symbolically as:

E = Eref + ADαE, (3)

where E, Eref are 3N vectors representing the unknown field and the reference

field, respectively. A is a 3N × 3N matrix which contains the Green tensor,

Dα is a diagonal matrix of size 3N × 3N which contains the polarizability. The45

linear system is solved iteratively, which means that we define a residual as

r =
||Ee − Eref − ADαEe||

||Eref ||
, (4)

where Ee is the field estimated iteratively and the iterative process is terminated

once r < η where η is a prescribed tolerance. This tolerance is the parameter

that quantifies the accuracy of the final field estimation. The iterative technique

that is used in this article to estimate Ee is the generalized product bi-conjugate50

gradient solver [26] which is an alternative version of the bi-conjugate gradient

stabilized solver, see Ref. [16, 17, 18] for the efficiency of different iterative

methods. In the iterative process numerous MVP are required. The matrix A

being Toeplitz, placing the dipoles on a cubic lattice: i = (ix, iy, iz), where ix =
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0, · · · , nx − 1, iy = 0, · · · , ny − 1 and iz = 0, · · · , nz − 1 with ri = (ixd, iyd, izd)55

and N = nxnynz permits to calculate the MVP using Fast Fourier transform

(FFT). Notice that objects with arbitrary shape can still be represented by a

cubic lattice, by simply setting to zero the polarizations at the lattice sites lying

outside the object boundaries [27]. The main advantage of DDA is that only

a small portion of space containing the object is meshed and there is no need60

for absorbing boundary conditions, thus it is very memory efficient. Its main

problem lies in the convergence of the iterative solver which can be very slow,

or worse, fail, when the object is large compared to the illumination wavelength

and/or is highly contrasted.

In the following, we study the influence of the initial estimate and the pre-65

conditioner on the time required for the iterative solver to converge. All the

simulations were performed with the freely accessible code IFDDA which can

be found in Ref. [11]. Other codes exist for DDA (see Ref. [28] appendix B for

a list of Open-Source DDA), but they are all based on the same principle, so

the results presented in this article are general. The Fast Fourier Transforms70

(FFT) are computed with the Fastest Fourier Transform in the West [29]. The

calculations are parallelized (OpenMP) on a computer with 12 Intel(R) Xeon(R)

CPU E5-2687W v2 at 3.40GHz.

3. Influence of the initial guess of the iterative solver on its compu-

tation time75

The iterative estimation of the field inside the sample usually starts with a

null field, i.e. Eini = 0. Yet, taking an initial guess that is closer to the final

solution, such as the field estimated by a fast approximate method, is a better

choice for diminishing the number of iterations. Hence, if one does not depart

too much from the validity domain of Born approximation , i.e. for objects with80

small contrast and small size compared to the wavelength, the initial guess can

be the field that would exist without the sample,

Eini ≈ Eref . (5)
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For larger objects that mainly diffract in the forward direction, one can use the

field given by the beam propagation method (BPM) [30, 31, 32] or the Rytov

approximation [33]. When the sample polarizability varies slowly compared to85

the wavelength, one can use the Classical Scalar Approximation (CSA) [34].

This technique consists in approximating the Green’s tensor appearing in the

linear system Eq. (1) by the diagonal tensor G = k2
0

eik0r

r
I where I is the identity

tensor [35, 36, 37]. This approach yields a scalar linear system for each field

component. If the incident field polarization is constant throughout the object90

(directed along û, with û∗.û = 1), and the field inside the object is only weakly

depolarized, another scalar approximation, named uGu, can be used. By as-

suming that the field inside the object remains polarized along û, E = eû, the

uGu method transforms the vectorial linear system given by Eqs. (1) and (3)

into a scalar system where the Green’s tensor is replaced by the function û∗.Gû95

and the unknown vector E by the unknown scalar component e [38]:

e(ri) = Eref(ri).û
∗ +

N
∑

j=1

û∗.G(ri, rj)ûα(rj)e(rj). (6)

It was shown in Ref. [38] that the uGu method was significantly more accurate

than CSA for a similar computational cost.

In the following, we consider objects that are illuminated by a plane wave

so that the incident field inside the sample is directed along û. We study the100

computation time for solving the linear system Eq. (3) when the initial guess is

the field given by Born, Rytov, BPM, CSA or uGu method. Note that while the

field given by the Born, Rytov and BPM techniques is obtained almost instantly,

that given by the CSA and uGu requires the solving of a linear system of size

N × N . The latter is performed with the same conjugate gradient technique105

as that used for solving the vectorial system, Eq. (3), except that the stopping

criterion is different, ηs for the scalar problem, η for the vectorial one. Obviously,

the time required for calculating the initial guess is taken into account when

estimating the global computation time.

The first object under study consists of a cube of relative permittivity ε = 1.6110
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and increasing side a, the mesh-size being set to d = λ/10. The iterative

solving of the vectorial system Eq. (3) was conducted with a stopping criterion

η = 10−4 while that of the scalar CSA or uGu systems was ηs = 0.01. We

plot in Fig. 1(b) the computation time of the different methods divided by the

time obtained when uGu provides the initial guess, as a function of the cube115

size, from a = 10λ to a = 20λ. It is seen that the uGu field is the best initial

guess for reducing the computation time, especially for large objects. Note that

decreasing the computation time for small objects, a ≤ λ, is of minor interest,

as the calculation is very quick. For a = 20λ, using the uGu field as initial

guess yields a time gain of at least 25% compared to all the other approaches.120

To complete this analysis, we plot in Fig. 1(a) the number of MVPs required

by the iterative solver to converge depending on the initial guess. As expected,

starting with the uGu field permits a significant decrease in the number of MVP.

This result shows the interest of providing an accurate initial guess for starting

the iterative inversion scheme, even though the latter also requires the solving of125

a linear system. At this point, it is worth studying the influence of the stopping

criterion ηs on the time gain. Obviously, large ηs diminishes the calculation time

of the scalar field but increases its inaccuracy while small ηs improves the scalar

field estimation but increases its computation time. Comparing the number of

MVPs required for the solving of Eq. (3) when the uGu field is estimated with130

ηs equal to 0.1, 0.01, 0.001 shows that the best compromise is ηs = 0.01, see

Fig. 2.

In a second example, we consider the same object deposited on a glass

substrate of refractive index 1.5 and illuminated under normal incidence from

the glass side or under total internal reflection (classic microscopy configura-135

tion [39]). Few approximate methods are able to simulate the field inside an

object above a substrate and we could only resort to the null, Born and uGu

fields for providing the initial guess. Figures 3 and 4 show the normalized com-

putation time together with the number of MVPs required for solving the linear

system with these different initial guesses. They confirm that, despite the com-140

putation cost of its calculation, the uGu field is the best option for initializing
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Figure 1: Cuboid of side (a × a × a/2) and relative permittivity ε = 1.6 with a meshsize

d = λ/10. (a) Number of MVP versus a for the different initial guess. (b) Time of computation

normalized to the time used by the scalar approximation uGu.
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Figure 2: Number of MVPs required by the iterative solving of Eq. (3) when the initial guess is

the uGu field estimated using various stopping criteria ηs. The object is a cuboid of increasing

size (a × a × a/2) and relative permittivity ε = 1.6 with a mesh-size d = λ/10.

the iterative solver as it yields a time gain up to 20% under normal incidence

and 50% under total internal reflection.

In an attempt to ameliorate further the initial guess, we implemented the

Hagedüs trick which consists in optimizing a scalar so that the initial field times145

this scalar minimizes the error on the linear system [40]. Unfortunately, except

when taking the Rytov field as initial guess, this technique did not yield any

improvement (and even though faster, the Rytov solution remained the slowest).

Figure 5 studies the influence of the relative permittivity ε for a cuboid of size

(a×a×a/2) with a/λ = 20 on the computation time. Taking the uGu solution as150

initial guess permits a significant reduction of the computation time, up to 40%,

as long as the cuboid permittivity remains smaller than 2. Indeed, cuboid with

permittivities higher than 2 tend to depolarize significantly the incident beam

and the field obtained with the uGu approximation is too far from the actual

one [38] to be useful. Note that very recently, Inzhevatkin and Yurkin show that155

the approximation of WKB (Wentzel Kramers Brillouin) as an initial estimate
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Figure 3: Cuboid of side (a × a × a/2) and relative permittivity ε = 1.6 with a meshsize

d = λ/10 deposited on a glass substrate. (a) Number of MVP versus a for the three different

initial guess: Born, null and uGu. (b) Computation time using the Born or null field as initial

guess divided by the time obtained when the scalar approximation uGu is the initial guess.
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Figure 4: Same legend as in Fig. 3, but the illumination is done in total internal reflection.
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Figure 5: Cuboid of side (a×a×a/2) with a/λ = 20 with a meshsize d = λ/10 in homogeneous

space. (a) Number of MVP versus ε for the three different initial guess: Born, null and uGu.

(b) Computation time using the Born or null field as initial guess divided by the time obtained

when the scalar approximation uGu is the initial guess.
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could also reduce the number of iterations for objects with low permittivity

(ε < 1.3) [41]. This confirms the fact that DDA is mainly suitable for optically

soft particles, when the particles become larger than wavelength of illumination

and that other techniques should be preferred when the permittivity exceeds160

2.5 [42]. In this case, a possible solution for speeding up the DDA consists in

preconditioning the matrix of interaction to change its spectrum [43]. This is

what we will study in the next section.

4. Influence of the preconditioner on the computation time

In this section, we investigate the interest of preconditioning the linear sys-165

tem for ameliorating the convergence of the iterative solver. This study is con-

ducted for both the vectorial and scalar linear systems.

4.1. Construction of the preconditioner

We first rewrite the linear system to be solved Eq. (3) in the form,

AE = Eref , (7)

where A = I − ADα. Instead of solving the original linear system above, one170

may consider the right preconditioned system,

AP−1(PE) = Eref , (8)

and solve AP−1y = Eref with E = P−1y. Alternatively, one may solve the left

preconditioned system

P−1AE = P−1Eref . (9)

Both systems give the same solution as the original system as long as the pre-

conditioner matrix P is non singular. Recently, Groth et al. [44] proposed a175

left preconditioning strategy based on the two level circulant preconditioner of

Chan and Olkin [45] for the DDA in the homogeneous configuration. The idea

consists in finding a two level circulant matrix, the closest possible to A, which
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can be easily invertible. To this aim, they consider a configuration in which

the object polarizability, α, is assumed to be constant over the cubic lattice.180

For inhomogeneous samples, α is the average of the polarizability over the cu-

bic lattice which corresponds to the Maxwell Garnett ’homogenized’ medium.

When α is a constant, the matrix A can be written, in the general case of an

object placed in a multilayered environment, as a block Toeplitz matrix (along

iy) of Toeplitz sub-matrices (along ix). To obtain an easily invertible matrix,185

A is approximated by a circulant matrix along these two dimensions. More

precisely, the preconditioning matrix reads

Pix,iy,iz1,iz2
= δ(i − 0) − α

(ny − iy)

ny

(nx − ix)

nx

gix,iy,iz1,iz2

− α
(ny − iy)

ny

ix

nx

g−(nx−ix),iy,iz1,iz2

−
iy

ny

(nx − ix)

nx

gix,−(ny−iy),iz1,iz2

−
iy

ny

ix

nx

g−(nx−ix),−(ny−iy),iz1,iz2
, (10)

where g is one of the nine components of the dyadic Green’s tensor and δ is the

Dirac’s delta function.

To obtain P−1, each 2-level circulant-block matrix P(iz1, iz2) of size nxny190

is diagonalized using 2D-FFTs [46]. Then, the 9 components of the Green

tensor are gathered to create a diagonal block matrix with nxny blocks of size

3nz × 3nz. The inversion of each block is done thanks to a LU method. For

the LU method we use the zgetrs routine from LAPACK [47]. More details are

given in Ref. [44]. Once P and P−1 are calculated, one solves iteratively the195

left or right conditioned linear system.

4.2. Testing the preconditioner for an object in homogeneous space

To check the interest of the preconditioning, we first consider a homogeneous

cuboid of side a = b = 10λ, relative permittivity ε = 2, with an increasing

height lz from λ/5 to 10λ. The tolerance of the iterative method is fixed to200

η = 10−4 and a null field is taken as initial guess. Figure 6(a) shows the
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number of MVPs required by the iterative solver as a function of lz without

preconditioner (NP), left preconditioner (LP) and right preconditioner (RP).

It is clear that preconditioning reduces the number of MVPs, particularly for

lz < a/2, see Fig. 6(a), the right preconditioner being slightly better than the205

left. Yet, since preconditioning requires additional computation time, we also

plot the computation time of the three methods (NP, RP, LP) divided by the

computation time without preconditioner (NP), see Fig. 6(b). We observe that

for lz < a/2 the preconditioning is efficient and time saving (except when the

object is represented by two layers of dipoles). As the object becomes thicker the210

time gain depends on the number nz of layers. Indeed, when the prime factors
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Figure 6: Solving the diffraction by a cuboid of width a = b = 10λ and increasing height,

lz/a (a) Number of MVPs required by the iterative solver in log scale with no preconditioner

(NP), left preconditioner (LP) and right preconditioner (RP). (b) Computation time required

by the solving of the left or right preconditioned linear system divided by the time without

preconditioner (NP).

decomposing nz are small, the 3D FFTs that are used for solving the linear

system in absence of preconditioner (we recall that, in homogeneous space,

A is block Toeplitz along the three directions (ix, iy, iz) while P is circulant

only along ix and iy) are very fast and the preconditioning is useless. On the215

contrary, when the prime factors of nz are large, the 3D FFTs are less efficient

and preconditioning the system is interesting. It allows a faster convergence

of the iterative solver, as shown in Fig. 7(a) where the residue of the iterative
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solver is plotted versus the number of MVPs for NP, LP and RP for a cuboid

with a = b = 10λ, lz = a/5 and relative permittivity 2.220

In Fig. 7(b) we investigate the interest of the preconditioning when the

permittivity of the cuboid of Figure 7(a) is increased. It is shown that precon-

ditioning is interesting when the permittivity contrast is moderate (ε between

1.2 to 2.3). For weak permittivities, NP requires few MVPs and preconditioning

is useless, for strong permittivities (above 2.5) the convergence of the precondi-225

tioned system appears less stable than the non-reconditioned one.
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Figure 7: Cuboid of side a = b = 10λ and lz = a/5. (a) Evolution of the residue in log scale

as a function of the number of MVPs of the iterative method for no preconditioning (NP),

with a right (RP) and left preconditioner (LP) for ε = 2. (b) Number of MVPs in log scale

versus the permittivity for η = 10−4.

We now consider an inhomogeneous sample corresponding to a cuboid of

side a = b = 10λ and lz = a/5 and random relative permittivity with Gaussian

probability density of mean εbg and variance σ2, with a Gaussian correlation

function [48], defined by 〈ε(r), ε(r′)〉 = ε2
bg + σ2 exp

(

− ‖r−r
′‖2

l2
c

)

. Figure 8 plots230

the number of MVP and normalized time versus σ for lc = λ and εbg = 2.

We observe that the preconditioning reduces the computation time by a fac-

tor of two when the inhomogeneity is moderate but is clearly inappropriate when

the inhomogeneity is strong. We tried to improve its performance by extend-

ing to the two-dimensional case the optimal circulant preconditioner presented235

in [49] for one-dimensional problems. Unfortunately, this modification did not
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yield any amelioration.
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Figure 8: Inhomogeneous cuboid of size (10λ×10λ×2λ) with εbg = 2 and lc = λ. (a) Number

of MVPs versus σ for no preconditioning (NP) with a right (RP) and left preconditioner

(LP). (b) Time of computation with left (LP) and right (RP) preconditioner divided by the

computation time obtained with no preconditioner (NP).

4.3. Testing the preconditioner for the scalar approximation

Recently we have introduced a scalar approximation that yields accelerate

estimates of the field calculations with good accuracy for permittivities typically240

less than two [38]. Under this approximation, the 2-level Chan preconditioner is

easy to implement as the Green’s function has only one component. It becomes

a diagonal block matrix made of nxny blocks of size nz × nz the inversion of

which is fast. We study the time gain brought by the preconditioning on the

same cuboid of increasing height as before. Figure 9 shows that whatever the245

height, the number of MVPs and the computation time is drastically reduced by

the preconditioner. Another study conducted with the inhomogeneous cuboid

revealed the same behavior as with the full vectorial problem : the precondi-

tioner is efficient for moderate inhomogeneity.

4.4. Testing the preconditioner for an object in presence of a substrate250

For an object in the presence of a multilayer, the A matrix in Eq. (3) is

only 2D Toeplitz in the x and y direction. This means that, except when the
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Figure 9: Same as Fig. 6 but the vectorial linear system was replaced by the scalar linear

system using the uGu approximation.

object is in the substrate or superstrate [51], the matrix vectors product in

the z-direction can not be done by FFT [50]. This configuration seems thus

better adapted to the use of the two-level circulating preconditioner. To test its255

performance, we study the same configurations as previously but the cuboids

are now deposited on a substrate of permittivity 2.25 and illuminated under

normal incidence. We observe in Figs. 10(a) and 10(b) that, in this case, the

preconditioner reduces the number of MVPs and allows a significant time gain

whatever the height of the cuboid.260

Similarly, when the permittivity of the cuboid is moderately increased, Fig. 11,

the time gain brought by the preconditioner is important and can reach a factor

of four. Yet, similarly to the homogeneous case, the preconditioner renders the

iterative solver unstable for permittivity above ε = 2.5.

5. Conclusion265

The new formulation of the scalar approximation that we have introduced

in [38] is an excellent initial estimate for the iterative method that solves the

DDA linear equation system. It reduces the computation time by 50% for

moderately contrasted objects (permittivity below 2) such as those encountered
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Figure 10: Same as Fig. 6 but the cuboid is placed on a glass substrate located at z = 0 and

the illumination is done along the z axis from the glass side.
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Figure 11: Cuboid of size (10λ × 10λ × 2λ) placed on a glass substrate located at z = 0

and the illumination is done along the z axis from the glass side. (a) Number of MVPs in

log scale as a function of ε with no preconditioner (NP), left preconditioner (LP) and right

preconditioner (RP). (b) Time of computation normalized with respect to the computation

time without preconditioner (NP) for the right and left preconditioning.
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in biological applications. We observed that this initial estimate was particularly270

efficient when the illumination was inhomogeneous, as shown for evanescent

illumination.

In addition, we have studied the interest of the 2-level circulating left pre-

conditioner introduced by Groth et al. [44] for further diminishing the com-

putation time. Groth et al. showed that this preconditioner was efficient for275

homogeneous flat object. We extended it to inhomogeneous objects and showed

its general interest for speeding up the solving of Maxwell equation under the

scalar approximation. In the vectorial case, its interest was more limited and

concerned weakly inhomogeneous objects with moderate permittivity deposited

on a substrate.280
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