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Replacing Maxwell equations by a scalar wave equation is often used in computational imaging to simulate the
light–sample interaction. It significantly reduces the computational burden but provides field maps that are insen-
sitive to the polarization of the incident field, provided the latter is constant throughout the sample. Here, we
develop a scalar approximation that accounts for the polarization of the incident field. Comparisons with rig-
orous simulations show that this approach is more accurate than the classical scalar approximation with similar
computational cost. ©2022Optica PublishingGroup

https://doi.org/10.1364/JOSAA.462034

1. INTRODUCTION

The last 20 years have seen the development of compu-
tational optical microscopy for recovering quantitative
three-dimensional maps of the sample permittivity with better
resolution than standard microscopes. This approach consists
in numerically reconstructing the sample from multiple images
recorded under various illuminations. It can be found in many
different systems, such as optical coherence tomography, optical
diffraction tomography, or Fourier ptychography [1–10]. The
key point of the numerical reconstruction is the model linking
the recorded image to the sample permittivity. When the sample
is small (a few wavelengths), it is possible to use a rigorous solver
of Maxwell equations for simulating the light–matter interac-
tion [11]. This approach accounts for and takes advantage of
the multiple scattering and the vectorial nature of the field in
highly contrasted samples [2]. However, in many applications
(particularly in the biology domain), the samples are large com-
pared to the wavelength and weakly contrasted. In this case,
most reconstruction procedures use approximate methods.
Born approximation is adapted to weakly scattering samples.
Rytov approximation [12,13] or the beam propagation method
(BPM) [14] can deal with larger and more distorting objects but
is accurate essentially in the forward direction (corresponding to
the transmission imaging configuration) [15]. When multiple
scattering is important, several groups have proposed to solve
the wave equation using a scalar approximation for the electric
field [16–18]. This widespread technique is valid when the sam-
ple permittivity varies on a scale larger than the wavelength [19].
It is more computationally intensive than the quasi-analytic
formulation of Born or Rytov approximations or the BPMs but
significantly less than the rigorous solving of Maxwell equa-
tions. It accounts for multiple scattering, and is as accurate in
reflection as in transmission configurations, but it implies that

the field maps inside isotropic samples are insensitive to the
polarization of the incident beam.

In this work, we propose a scalar approximation that accounts
for the incident polarization provided the latter is constant
throughout the sample. This condition is met, for example,
when the sample is illuminated by a collimated beam. After
describing the theory, we show with numerical simulations
that our approach is more accurate than the classical scalar
approximation.

2. SCALAR APPROXIMATION: THEORY

We consider a medium described by its relative isotropic permit-
tivity ε(r) illuminated by a monochromatic light of wavenum-
ber k0 radiated from a source S(r). The electric field E(r) satisfies
the vectorial equation,

∇× [∇× E(r)] − ε(r)k2
0E(r)= S(r). (1)

If the permittivity varies on a scale much larger than the
wavelength, 0=∇ · [ε(r)E(r)] ≈ ε(r)[∇ · E(r)], and Eq. (1)
simplifies to

1E(r)+ ε(r)k2
0E(r)=−S(r), (2)

where each field component satisfies an independent scalar
equation. We now consider configurations in which the field
illuminating the sample, i.e., the field created by S in absence of
the sample, Eref(r), is a beam with uniform, possibly complex,
polarization u,

Eref(r)= e ref(r)u, (3)

where u∗ · u= 1, a∗ being the conjugate of a , and e ref is the
reference field complex amplitude.
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Typically, this condition is met when the sample is illu-
minated by a collimated beam as in most optical diffraction
tomography experiments [1–4,6,8,14]. In this case, the scalar
equations satisfied by the three field components are simi-
lar. The field E(r) will be polarized along u and its complex
amplitude e (r) will not depend on u. Under the classical scalar
approximation (CSA), changing the polarization of the beam
illuminating the sample will not change the field distribution
inside the sample. This property, which is indeed observed
in slowly varying media, limits the interest of the scalar wave
approximation outside its prescribed validity domain, especially
when considering bounded samples whose frontiers correspond
to a sudden change of permittivity.

To address this issue, we propose another scalar approxima-
tion relying only on the assumption that the field polarization
inside the sample is close to that of the illuminating field.
Introducing a reference permittivity εref(r) and a sample permit-
tivity contrast χ(r) such that ε(r)= εref(r)+ χ(r), Eq. (1) can
be transformed into the volume integral equation,

E(r)= Eref(r)+ k2
0

∫
G(r, r′)χ(r′)E(r′)dr′, (4)

where G is the Green dyadic of the reference medium,
G(r, r′)p(r′) is the (known) field radiated at r by a dipole
placed at r′ in the reference medium, and Eref is the (known)
illuminating field created by S in the reference medium.

This integral equation obtained with Maxwell’s equations is
the cornerstone of the discrete dipole approximation (DDA)
[20–24]. It is solved by discretizing the sample support Vobj,
i.e., the region where χ(r) 6= 0, into N small cubic subunits
of side d over which the three unknown field components of E
are assumed to be constant and solving the resulting 3N × 3N
linear system. The linear system is solved iteratively with a
conjugate gradient method [25] with the use of the fast Fourier
transform [26]. Once the field inside Vobj is known, it can be
calculated everywhere using Eq. (4) or its far-field version [27].

To obtain a scalar equation, we assume that for any r ∈ Vobj,
E(r) ≈ e (r)u and from the scalar product of Eq. (4) with u∗, we
obtain

e (r)= e ref(r)+ k2
0

∫
g u(r, r′)χ(r′)e (r′)dr′, (5)

where g u(r, r′)= u∗ ·G(r, r′)u varies with u, which implies
that the Green function and then the scalar field will depend on
the polarization of the incident beam. Note that in Appendix A
we establish the differential equation satisfied by e (r).

The time required for solving the scalar linear system Eq. (5)
scaling as N ln(N) is expected to be at least three times shorter
than that required for solving the full vectorial system, Eq. (4),
which scales as 3N ln(3N), with a storage burden divided by 9
(as in the CSA). Hereafter, the classical scalar approximation will
be denoted CSA, while that developed in this paper will be called
uGu. It is worth noting that CSA can be solved in the same way
as uGu, using the integral equation

e (r)= e ref(r)+ k2
0

∫
g (r, r′)χ(r′)e (r′)dr′, (6)

the only difference laying in g (r, r′)which is the standard scalar
Green function, i.e., g (r, r′)= e ik0 R/(4π R) with R= r− r′

and R = |R| (for an homogeneous reference medium). Thus
CSA and uGu can be implemented easily on the same code by
just replacing g by g u .

3. COMPARISONS BETWEEN THE DIFFERENT
SCALAR APPROXIMATIONS

In this section, we simulate the scattering by different sam-
ples (spheres and cuboids) illuminated by a collimated beam.
The samples are of micrometric size (about 10 wavelengths),
and their permittivity is increased to test the robustness of the
approximations as the multiple scattering increases. We com-
pare the near field E(r), r ∈ Vobj (field inside the sample) and the

far field in the k direction, E(r)= e ik0r

r F(k), where k= k0r/r
with r = r, and r is far from the sample, obtained using the
different scalar approximations with that given by the rigorous
Maxwell equation solver, DDA [24], through the following
errors:

Errnf =

∫
Vobj
‖Erig(r)− Eapprox(r)‖dr∫

Vobj
‖Erig(r)‖ dr

, (7)

and for the far field

Errff =

∫
2π‖Frig(k)− Fapprox(k)‖d�∫

2π‖Frig(k)‖d�
, (8)

where the integration is performed over 2π str for kz > 0 or
kz < 0. We also study the extinction cross section [21,24,28]

Cext =
k0

E 2
ref

∫
Vobj

Im
[
E∗ref(r) · [χ(r)E(r)]

]
dr , (9)

with E ref = |Eref|.

A. Accuracy of the Extinction Cross Section

In this subsection, we compare the extinction cross sections of
spheres and cuboids of varying size and permittivity calculated
by CSA and uGu to those given by the rigorous electromagnetic
approx solver DDA via the relative error (C approx

ext −C rig
ext)/C

rig
ext.

The simulations were performed by solving the volume integral
equations of DDA Eqs. (4), uGu (5), and CSA (6), with the
same discretization mesh, d = 2a/120, where a is the radius of
the spheres or the largest side of the cuboids.

We first study the extinction cross section for a sphere versus
its relative permittivity (Fig. 1) and versus its radius (Fig. 2).

Then we study a cuboid of size (a , b, c ), as depicted in Fig. 3,
illuminated with a plane wave along the z axis and polariza-
tion along x [Fig. 3(a)] or y [Fig. 3(b)]. In Fig. 4 we plot the
extinction cross section versus the size of the cuboid for both
polarizations.

In general, we observe that while the error of the CSA
oscillates and can reach 100% for certain configurations, the
estimation of the extinction cross section using uGu is always
remarkably accurate (error below 4%). Actually, we tried other
samples (aggregates of spheres, inhomogeneous media, metallic
and dielectric materials) and could not find any examples (that
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Fig. 1. Extinction cross section versus ε for a sphere of radius
a = 4 µm illuminated by a plane wave of wavelength 632 nm.
(a) Relative error between the CSA, dashed line (uGu, plain line), and
the rigorous DDA. (b) Normalized time gain tDDA/tCSA and tDDA/tuGu

of the scalar approaches versus the rigorous method.
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Fig. 2. Same as Fig. 1 but the error is calculated as a function of the
radius of the sphere, the relative permittivity being set to ε= 1.5.
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Fig. 3. Representation of a cuboid of sides a and b = c illuminated
under normal incidence by a plane wave with different polarizations.
(a) Polarization along x axis. (b) Polarization along y axis.

could be handled by the rigorous approach in less than a day)
able to challenge the uGu approximation. This striking per-
formance may be explained by noting that the extinction cross
section depends only on the field component that is polarized
in the same way as the illuminating field. Thus, neglecting the
other components, as is done in uGu, has less impact.

The gain in computation time permitted by the scalar
approaches was estimated by calculating tDDA/tCSA and
tDDA/tuGu and is plotted together with the extinction cross
section. As expected, the scalar approaches are significantly
faster (by a factor ranging from 3 to 40) than the rigorous
method. Most importantly, we observed that the highest time
gain was obtained when the rigorous method was particularly
slow to converge due to the increasing contribution of multiple
scattering (objects of high permittivity and large size); see Ref.
[23]. For example, the DDA computation time required for a
sphere of radius six wavelengths and permittivity 1.1 was about
5 min and that of uGu about 2 min, but, when the permittivity
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Fig. 4. Extinction cross section as a function of a for a cuboid
of dimensions (a , a/2, a/2), as depicted by Fig. 3 for an incident
polarization (a), (b) along x and (c), (d) along y . (a), (c) Relative error
between the CSA and uGu and the rigorous DDA. (b), (d) Normalized
time gain tDDA/tCSA and tDDA/tuGu.

reached 2, the DDA time increased to 2 h while that of uGu
remained below 6 min. The uGu gain in computation time can
be explained by the fact that its scalar linear system is three-fold
smaller than the vectorial one and is also better conditioned.
Note that the iterative solving of the uGu linear system always
converged while that of the CSA failed for some specific geom-
etries. These cases are indicated by setting to zero the CSA
time gain.

B. Accuracy of the Near and Far Fields

In this subsection, we study the accuracy of the near field and
the far field estimated by the scalar approaches for a cuboid of
size a = 5 µm, b = c = 1 µm illuminated by a plane wave of
1= 632.8 nm. Here, the meshsize is set to d = a/150.

Figure 5 shows that uGu is always better than CSA, especially
when the polarization of the incident field is along the smallest
side of the cuboid. We also observe that the cuboid scatters most
of the light in the forward direction; the reflected field is more
difficult to estimate than the transmitted one.

To investigate in more detail the behavior of uGu and CSA,
we plot in Fig. 6 the amplitude of the near field inside the cuboid
for the different incident polarizations. As expected, the field
amplitude given by the CSA is the same no matter the incident
polarization, whereas those of uGu and DDA differ in the same
way. In Fig. 7, we plot the back-scattered field amplitude F
for kz < 0 as a function of (kx , ky ) for the three methods. We
have chosen the reflection configuration because the forward-
scattered field (transmission configuration) is easier to simulate
and approximate methods such as Rytov and BPM are already
very efficient for this kind of sample [15]. Once again, we
observe that uGu is significantly better than CSA. For the inci-
dent polarization along x , uGu is accurate no matter the angles
of observation, while for the y polarization, it is accurate for
angles close to the specular reflected direction but deteriorates
at large angles. On the other hand, CSA fails to recover the
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Fig. 5. Relative errors for increasing ε of the extinction cross section
(top row), near field (middle row), and far field (bottom row) for a
cuboid a = 5 µm, b = c = 1 µm illuminated by a plane wave with,
1= 632.8 nm, x -polarized (left column) or y -polarized (right col-
umn). kz is the z component of the observation wavevector. kz > 0
indicates far-field observation in the transmission configuration
(same direction as the incident plane wave), while kz < 0 indicates the
reflection configuration.
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Fig. 6. Near-field amplitude in the (x , y ) plane cutting the middle
of the cuboid of the configuration depicted in Fig. 3 for an incident
polarization along x (first three figures) or along y and ε= 1.8 (last
three figures).
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Fig. 7. Back-scattered far-field amplitude in the (kx , ky ) plane (kz <

0) of the configuration depicted in Fig. 3 for an incident polarization
along x (left column) or along y (right column) and ε= 1.8. Top row,
rigorous calculation; middle row, uGu; bottom row, CSA.

behavior of the back-scattered far field, the central lobe always
being largely underestimated.

4. EXTENDING uGu TO SAMPLES IN
MULTILAYER

The uGu method can also be applied to samples placed in a
multilayer, as the dyadic Green function of such a reference
medium is well known [29] (note that we are not aware of any
implementation of the CSA in a multilayered system). However,
it requires that the polarization of the reference field be constant
throughout the sample for Eq. (3) to be satisfied. This condi-
tion is met when the incident beam is polarized parallel to the
multilayer interfaces, or if the sample is only illuminated by a
transmitted beam (whatever its polarization). Here we consider
the same cuboid as in the previous section deposited on a gold
substrate and illuminated from vacuum under normal incidence
by an x - or y -polarized plane wave. We observe in Fig. 8 that the
uGu error in the presence of the substrate is of the same order as
that obtained when the cuboid was in vacuum.

The accuracy of uGu is confirmed in Fig. 9, which displays
the back-scattered far-field amplitude in the (kx , ky ) plane for
ε= 1.6.
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5. CONCLUSION

In conclusion, we have developed a novel scalar approximation,
uGu, which is adapted to configurations where the incident
polarization is constant throughout the sample (when the illu-
mination is a collimated beam, for example). No matter the
samples considered (and we displayed only a selection of our
different tries), uGu was always more accurate than the CSA,

with a comparable computation time. Note that the latter is
significantly shorter than that of a rigorous calculation (up to
10 times), thanks to the smaller size and better conditioning
of the linear system to be solved. In addition, uGu was shown
to be particularly adapted to the estimation of the extinction
cross section as we could not find one object for which the error
exceeded a few percent. Last, uGu was able to reproduce the
different behaviors of the near field inside a cuboid when the
incident polarization was changed, which could be particularly
useful in imaging experiments where different polarizations
are used to probe the samples [30,31]. Thus, we believe that
uGu should always be preferred to CSA when possible. Note
that both the uGu and CSA approximations can be tested in
the freely accessible Maxwell equations solver IFDDA and
IFDDAM [32].

APPENDIX A: THE DIFFERENTIAL EQUATION
OF uGu

The integral equation (5) that is satisfied by the scalar field e is
equivalent to a differential equation. Starting from the rigorous
vectorial equation

∇× [∇× E(r)] − ε(r)k2
0E(r)= S(r), (A1)

one obtains

1E(r)+ ε(r)k2
0E(r)=−S(r)+∇[∇ · E(r)], (A2)

which, using 0=∇ · [ε(r)E(r)], can be written as

1E(r)+ ε(r)k2
0E(r)=−S(r)−∇[∇ · (χ(r)E(r))]. (A3)

The classical scalar method amounts to neglecting totally
−∇ [∇· (χ(r)E(r))] to obtain the three scalar equations,

1E(r)+ ε(r)k2
0E(r)=−S(r). (A4)

We now assume that S(r) is a source that creates an incident
field that is directed along ẑ. The uGu method amounts to

approximating−∇[∇ · (χ(r)E(r))]by− ∂2
[χ(r)e (r)]
∂z2 , where e (r)

is the z component of the field. This approximation is justified
by the assumption that the x and y components of the field
inside the sample (i.e., where χ(r) 6= 0) are much smaller than
the z component. Then the differential equation satisfied by
e (r) reads

1e (r)+ ε(r)k2
0e (r)+

∂2
[χ(r)e (r)]
∂z2

=−Sz(r), (A5)

where Sz(r) is the source creating the incident z-polarized field.
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