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Improving the resolution of grating-assisted optical diffraction tomography

using a priori information in the reconstruction procedure
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We provide a numerical study of a tomographic microscope in which the sample is deposited on a periodically
nanostructured substrate and is illuminated under various incident angles. The map of permittivity of the sample
is retrieved numerically from the complex data of the diffracted far-field. A single-scattering analysis shows that,
with an optimized grating of period �/5, the transverse resolution of the digital imager is about �/10. To
ameliorate the resolution further, a priori information is incorporated in the inversion procedure. Fixing the
lower and upper bounds of the sample permittivity permits us to obtain a transverse resolution about �/15.
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1. Introduction

Optical diffraction tomography (ODT) is a promising
digital imaging technique in which the sample permit-
tivity is retrieved numerically from the complex data of
the diffracted field obtained for various angles of
illumination. This technique has been shown to exhibit
a better resolution than that of a standard microscope
with the same numerical aperture (NA) [1–3]. Using
single scattering analysis, it is shown that the resolu-
tion of ODT is about 0.35�/NA [4] while that of the
wide-field microscope is equal to the Rayleigh criterion
0.6�/NA [5]. Basically, two approaches can be followed
to ameliorate the resolution of ODT.

The first one, which has been primarily adopted for
analogical microscopes, consists of diminishing the
effective incident wavelength by using immersed
objectives or prisms [6–8]. The higher the refraction
index n of the immersion liquid or prism, the smaller
the effective wavelength, �eff¼ �/n , and the better the
resolution. With the present lossless materials existing
in optics, the resolution can be ameliorated by a factor
two at best. To overcome this limit, it has been
proposed to deposit the sample on a periodically
nanostructured substrate. The grating is optimized so
as to transform the impinging propagative beam
into an evanescent field with high spatial frequency.
In this case, the effective wavelength of the field
illuminating the sample depends solely on the grating
period d and it can be much smaller than �/2.
Simulations of grating-assisted ODT have shown that

one could expect a resolution about �/10 with this
approach [9,10].

The second way to ameliorate the resolution lays
on the reconstruction algorithms. Most of the present
experimental and theoretical studies of ODT make use

of linear inversion algorithms, based on inverse
Fourier transforms [1,3,6,11–13] to retrieve the
sample permittivity. These techniques yield good
results when the sample is weakly diffracting and are
particularly adapted to biological issues. Non-linear
iterative inversion techniques have also been developed
to image highly contrasted samples such as those
encountered in the nanotechnology domain [14,15].
The latter provide much better images than that
obtained with linear reconstruction algorithms when
multiple scattering cannot be neglected [14,15] and they

may even ameliorate the resolution beyond that
expected with the single scattering analysis [16–18].
Yet, the advantages of numerical imaging have still not
been fully exploited. Indeed, up to now, most of the
inversion techniques developed for ODT have not
incorporated any a priori information on the object.
Now, it has been shown, in the microwave domain in
particular, that a spectacular amelioration of the
images can be obtained just by specifying the lower
and upper bounds of the sample permittivity [19].

In this work, we present a numerical study of the
resolution of a grating-assisted digital microscope
using different inversion procedures. In Section 2 we

recall the principles of grating-assisted ODT and we
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derive the point spread function of the imager using a
single scattering analysis. In Section 3, we sketch the
numerical technique that is used to simulate the
experiment and we detail the reconstruction algorithm
that accounts for some a priori information on the
object. Lastly, in Section 4, we compare the images
obtained with and without a priori information for
various samples [16].

2. Single-scattering analysis of the resolution of

grating-assisted ODT

We consider a tomographic microscope in reflection
configuration. The sample (in air) is deposited on a
periodically nanostructured glass slide (see Figure 1).
Both the illumination and the detection are per-
formed through the glass substrate. Experimentally,
this configuration could be realized by using the
same immersed objective for the illumination and
the detection as in a classical reflection microscope.
The grating-substrate is similar to that described
in [9,10]. It consists of a 7 nm silver film with
nsilver¼ 0.12þ 2.91i, and a 7 nm layer of SiO2 with
nSiO2
¼ 1.5 deposited on a glass substrate ns¼ 1.5.

The SiO2 layer is etched with square holes along a

square mesh. The holes are filled with Ta2O5, with

n Ta2O5¼ 2.1. The period d of the square grating along

the x and y axes is 100 nm while the side of the holes is

67 nm and the free-space wavelength of illumination

�¼ 500 nm. When the grating is illuminated by a plane

wave with tangential wavevector kinc and linear polar-

ization û, the transmitted electric field above the

grating can be written as a Rayleigh series,

Egratingðkinc, û, rk, zÞ ¼ expðikinc:rkÞ
X
n,m

An,mðkinc, ûÞ

� expðiKn,m:rk þ ikn,mz zÞ ð1Þ

where Kn,m ¼ n2�=dx̂þm2�=dŷ, kn,mz ¼ ½k
2
0 � jKn,mþ

kincj
2�
1=2 with the imaginary part of kn,mz positive,

k0¼ 2�/� and r¼ (rk, z). The period of the grating

being much smaller than �, the grating behaves in most

cases as a homogeneous layer and only the (0, 0) order

is dominant in the series. In this case, the field just

above the grating can be approximated by,

Egratingðkinc, û, rk, 0Þ � A0,0ðkinc, ûÞ expðikinc:rkÞ: ð2Þ

However, thanks to the thin metallic layer, the grating

also supports electromagnetic eigenmodes (short-range

and long-range plasmons) which can be excited for

specific tangential incident wavevectors. In this case,

the Rayleigh series contains at least two dominant

terms [10]. For example, when the grating is illumi-

nated by a p-polarized plane wave with tangential

wavevector kres ¼ ns
2�
� sin �resx̂ with �res� 80 degree,

the field just above the grating can be written as,

Egratingðkres, p̂, rk, 0Þ � expðikres:rkÞ
�
A0,0ðkres, p̂Þ

þA�1,0ðkres, p̂ÞexpðiK�1,0:rkÞ
�
, ð3Þ

where p̂ denotes the linear p-polarization of the

incident plane wave that corresponds to an incident

electric field in the plane of incidence. The amplitude of

the (�1, 0) order is dominant in the Rayleigh series at

this angle of incidence because it corresponds to the

excitation through the (�1, 0) reciprocal wavevector of

the short-range plasmon supported by the metallic

film. We have checked with a rigorous calculation of

the grating field with a Fourier modal method [20]

that, in this configuration, all the orders in the

Rayleigh series are at least ten times smaller than the

(0, 0) order, except the (�1, 0) order which is about half

the zero order.
We now study the field diffracted by an object,

described by its relative permittivity "(rk, z), which is

deposited on the grating. The whole structure is

illuminated by a û-polarized plane wave stemming

from the substrate with tangential wavevector kinc.

Under the renormalized Born approximation, the

far-field e(kd, kinc, û) diffracted by the object along

Figure 1. Geometry of the imaging system. The objects are
deposited on a nanostructured substrate and successively
illuminated from below by eight p polarized plane waves.
The incident angle with respect to z axis is always 80� while
the incident angle with respect to x axis varies with a step of
45�. The far-field is detected in the substrate along 80
directions equally spaced within a cone of half-angle 70�.
(The color version of this figure is included in the online
version of the journal.)
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the direction defined by the tangential wavevector kd
reads,

eðkd, kinc, ûÞ �

ð
�d ðrk, zÞgðkd, rk, zÞ

� Egratingðkinc, û, rk, zÞdrkdz ð4Þ

where �d is the density of polarizability of an infinitely
small spherical or square material volume of the object,
given by

�d ðrk, zÞ ¼
3

4�

"ðrk, zÞ � 1

"ðrk, zÞ þ 2
, ð5Þ

and g(kd, rk, z) � p is the far-field radiated in the
substrate along the direction defined by the tangential
wavevector kd by a dipole p placed at r¼ (rk, z) above
the grating. Invoking the reciprocity theorem, [21–23],
the v̂ component of e(kd,kinc, û) can be written as,

eðkd, kinc, ûÞ � v̂ �

ð
�d ðrk, zÞ

� Egratingð�kd, v̂, rk, zÞEgratingðkinc, û, rk, zÞdrkdz: ð6Þ

For sake of simplicity, we assume that "(rk, z)�1¼
D"(rk)H(z) where H is equal to zero for z4 h and z5 0
and is equal to one for 05 z5 h with h much smaller
than the wavelength. Under these assumptions, if both
the detection and illumination are achieved under
non-resonant conditions, one gets,

eðkd,kinc, ûÞ � v̂� h ~�d ðkinc�kdÞA0,0ð�kd, v̂Þ �A0,0ðkinc, ûÞ,

ð7Þ

where ~� is the 2D Fourier transform of �(rk, 0). If the
illumination is achieved under the resonant conditions,
Equation (3), while the detection is achieved under
non-resonant conditions, Equation (2), one gets,

eðkd, kres, p̂Þ � v̂ � h

�
~�d ðkres � kdÞ

� A0,0ð�kd, v̂Þ � A0,0ðkres, p̂Þ

þ ~�d ðkres þ K�1,0 � kdÞ

� A0,0ð�kd, v̂ÞA�1,0ðkres, p̂Þ

�
: ð8Þ

In this case, the scattered field is linked to two Fourier
coefficients of the object polarizability. Yet, it is
generally possible to find both frequencies, by taking
another incident wavevector kinc, and another direction
of observation k0d so that kres � kd ¼ kinc � k0d. We can
now define the Fourier domain that is accessible with
the chosen configuration and derive the expected
resolution of the imager.

In our simulations, we take four resonant illumina-
tions with wavevectors �kxð yÞres ¼ �nsk0 sin �resx̂ðŷÞ.
We assume that the diffracted field is detected
continuously in the 2� str solid angle about the

normal to the grating. Using Equations (7) and (8) it
is seen that the accessible 2D Fourier domain for the
object polarizability is made of eight disks with radius
nsk0 centered on �kx(y),res and �kx(y),resþK�1,0(K0,�1).
Note that, in the absence of the grating, the accessible
2D Fourier domain would be made of four disks with
radius nsk0 centered on �kx(y),inc. The plot of the point
spread function of the imager, obtained by Fourier
transforming the spectral support, is given in Figure 2.
One observes that the resolution is about �/10 in all
directions but that the side lobes are particularly
important along the diagonals of the grating. In the
absence of the grating, i.e. when the objects are
deposited on the glass substrate, the resolution is
about �/5.

This simple Fourier analysis holds when the grating
field approximations, Equations (2) and (3), hold and
when the diffracted field is continuously detected in 2�
str. In practice, the field is detected along several
discrete directions and one cannot totally neglect the
higher order terms in the Rayleigh series. Hence,
instead of using a direct inverse Fourier procedure,
it appears more convenient to use an iterative inversion
algorithm based on a conjugate gradient to retrieve
the permittivity map of the sample. Moreover, this
approach makes it possible to incorporate a priori
information on the object and to improve further the
resolution of the images.

3. Inversion scheme

In this section, we briefly describe the technique that
enables us to calculate the scattered far-field for a given

Figure 2. Point spread function versus rk/�. (The color
version of this figure is included in the online version of the
journal.)
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estimation of the permittivity and the inversion

procedure.

3.1. Forward scattering problem

Contrary to the first section, the forward scattering

problem is addressed rigorously, without assuming

Born approximation. In other words, the unperturbed

grating field Egrating is replaced by the local field E that

accounts for the presence of the object in Equation (4).

The local field is computed through the coupled dipole

method (CDM) [22,24]. In this technique, the sample

under study is considered a perturbation of the

periodically nanostructured substrate. One introduces

the field susceptibility tensor G such that G(r, r0)p is the

electric field at r radiated by a dipole p located at r0

above the grating [24]. Note that

Gðr, r0Þ ¼ gðk, r0Þ expðinsk0rÞ=r ð9Þ

with k ¼ nsk0r̂ in far-field (in the substrate). The

calculation of G can be found in [22,25].
To calculate the local field E a volume integral

equation restricted to the volume of the scatterer needs

to be solved [26]. The scatterer is discretized as a

collection of K dipolar subunits arranged along a cubic

array. Each subunit is small enough compared to the

spatial variations of the electromagnetic field for the

dipole approximation to apply. Then, the electric local

field at each subunit position is derived from the

self-consistent equation

EðriÞ ¼ EgratingðriÞ þ
XK

k¼1,k6¼i

Gðri, rkÞ�ðrkÞEðrkÞ, ð10Þ

where �(rk) is the polarizability of the subunit located

at the position rk, �¼ d3�d.
Once the electric local field is known by solving the

linear system represented by Equation (10), the field

outside the object can be computed with,

EðrÞ ¼ EgratingðrÞ þ
XK
k¼1

Gðr, rkÞ�ðrkÞEðrkÞ: ð11Þ

In an ODT experiment, the detection is performed

in the far-field, which permits us to use the

far-field expression of the field susceptibility tensor,

Equation (9).
More precisely, the scattered field is measured for

M points of observation and L different angles of

incidence. Then Equation (11) can be rewritten sym-

bolically in the following way:

Ed
l ¼ B�El, ð12Þ

where l¼ 1, . . . ,L, and B is a matrix of size (3M� 3K ).
The matrix B contains the field susceptibility tensors,
G(rj, rk), where rk denotes a point in the discretized
object, k¼ 1, . . . ,K, while rj is an observation point,
j¼ 1, . . . ,M. B does not depend on the angle of
incidence. �El is a vector of size 3K which represents,
for each angle of incidence, the dipole moment induced
at each point of discretization of the object. With this
approach, we are able to simulate ‘rigorously’ the field
diffracted by any object deposited on the grating in the
configuration of the ODT experiment.

3.2. Inverse scattering problem

The realm of inverse scattering problems is to deter-
mine properties of unknown targets from the knowl-
edge of their responses to known exterior excitation. In
electromagnetism, these problems have been exten-
sively studied during the last decades [27–32]. Special
sections in the journal Inverse Problems devoted to the
validation of inversion algorithms against experimental
data are reported [33–35] for both two- and
three-dimensional cases. Many approaches have been
investigated and the most effective ones are iterative
techniques. The basic idea underlying these techniques
is to start with an initial guess and gradually adjust the
parameter of interest, namely the refractive index of
the targets, by minimizing a cost functional. This
functional describes the discrepancy between measure-
ments (the response to the exterior excitation) and the
response, computed via a forward solver, that would
be measured if the target under test is the available
estimate. In this framework, we have extended these
techniques to optical imaging [3,7,9,36,37].

For the optical imaging problem, we consider an
unknown target, entirely confined in a bounded box
�	R3 as shown in Figure 1, successively illuminated
by l¼ 1, . . . ,L electromagnetic waves. For each illumi-
nation l, the scattered field )l is measured on the
surface �. The inverse scattering problem consists of
finding the complex relative permittivity " distribution
in � such that the corresponding scattering field Ed

l

matches the measured one. This ill-posed nonlinear
problem is solved iteratively. The procedure used in
this article has been explained in some references [7,14]
but for the convenience of the readers we explain it
here briefly. A sequence of polarizabilities {�n} is
constructed according to the following relation

�n ¼ �n�1 þ andn, ð13Þ

where �n and �n�1 denote estimates of the unknown
polarizability � for iteration step n and n� 1, respec-
tively. dn is an updating direction involving the gradient
of the cost functional F (�) with respect to � assuming
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that the internal fields El do not change. The scalar
weight an2C is determined by minimizing at each
iteration step n the cost functional F n defined as

F nð�nÞ ¼

XL

l¼1
jj)l�B�nEl,njj

2
�XL

l¼1
jj)l jj

2
�

¼W�

XL
l¼1

jj)l�B�nEl,njj
2
�, ð14Þ

with El,n being the local electric field that would be
present in � if the polarizability distribution was �n�1.
The field El,n is obtained by solving the dense linear
system described by Equation (10) with the polariz-
ability taken equal to �n�1. When the objects are much
smaller than the wavelength, the renormalized Born
approximation [7], i.e. El,n ¼ El

grating, can be success-
fully used. This assumption greatly diminishes the
computational time but it does not account for
multiple scattering phenomena. Substituting the
expression of the polarizability �n derived from
Equation (13) in Equation (14) leads to a polynomial
expression with respect to the scalar coefficient an.
Thus, the minimization of the cost functional F n is
reduced to a minimization of a simple cost function
F n(an), for which the unique minimum is reached for

an ¼

XL

l¼1
hBdnEl,nj)l � B�n�1El,ni�XL

l¼1
jjBdnEl,njj�

, ð15Þ

where5 �j�4� denotes the inner product in L2. As the
updating direction dn, we take the conjugate gradient
direction

dn ¼ gn;� þ �ndn�1, ð16Þ

with gn;� being the gradient of the cost functional F
with respect to the polarizability assuming that the
internal fields El do not change

gn,� ¼ �W�

XL
l¼1

E
l,n � B
y
ð)l � B�n�1El Þ, ð17Þ

in which û* represents the complex conjugate of û and
B
y
denotes the transpose complex conjugate matrix of

the matrix B.
The scalar coefficient �n is defined as

�n ¼
h gn;�j gn;� � gn�1;�i�

jj gn�1;�jj
2
�

: ð18Þ

The initial guess of the iterative algorithm �0 is
estimated with a back-propagation procedure [7].

We now assume that the objects under study have a
real relative permittivity that is between 1 and "r. This
a priori information is included in the inversion scheme
by retrieving an auxiliary parameter � such that
"¼ 1þ ("r� 1)e��

2

instead of retrieving the

polarizability �. The algorithm is kept as described
previously but with a new gradient of F with respect to
the parameter of interest. This new gradient reads

gn,� ¼ gn,�
d�

d�
, ð19Þ

where gn,� is the gradient of F with respect to � and gn,�
is the gradient as given in Equation (17). We use a
numerical optimization scheme to zero gn,� and find an.

4. Results

In all the numerical experiments, the incident beam is
coming from the glass substrate and makes an angle of
80� with respect to the z-axis to excite, via the (�1, 0)
diffraction order of the grating, the short-range
plasmon of the metallic film, see Section 2. We have
used eight different illuminations by rotating the
incident plane of 45� about the z-axis. The scattered
field is detected in the substrate for 80 angles of
observation within a cone of half angle 70�. The
synthetic data )l, are always computed without any
approximation with Equations (10) and (11).

All the images are obtained with the nonlinear
inversion algorithm that accounts for multiple scatter-
ing. Note that the Born approximation fails quickly
when high spatial frequency evanescent waves are used
to probe the sample [10,14]. To fasten the iterative
inversion procedure, the near-field equation,
Equation (10) is solved by replacing the grating field
susceptibility G by a simpler tensor accounting for the
multilayer only. On the other hand, the far-field
equation Equation (11) is computed with the adequate
far-field grating tensor [10]. We have stopped the
iteration procedure when the cost function reaches a
‘plateau’. We did not notice any marked change when
continuing iterating. The typical number of iterates
reported here is 2000, bearing in mind that for simple
cases, such as dipoles and when including the a priori
information, this number decreases.

4.1. Imaging without a priori information

To point out the resolution improvement brought
about by the nanostructured substrate, we compare the
images of two minute spheres, of relative permittivity
2.25, the centers of which are separated by �/10. The
images are obtained with the same inversion procedure
for three different configurations. The spheres are
placed in homogeneous space, on a glass substrate and
on the grating, see Figures 3(a)–(c), respectively. As
expected, one observes that the only spheres placed on
the grating can be distinguished. Since the nanostruc-
tured substrate is not invariant by translation, it is

802 P.C. Chaumet et al.
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necessary to check that the resolution does not depend
too much on the position of the objects on the grating.
In Figure 4, we display the images obtained for three
different positions of the spheres. Although some
differences can be noticed, we are able to distinguish
the two spheres in all cases. Note that, as expected
from Figure 2, the image is particularly distorted when
the spheres are placed along the diagonals of the
grating.

We now investigate the ability of the inversion
procedure to retrieve more complicated objects. We
consider a torus of outer diameter �/4.5, inner diameter
�/10 and height �/17. The torus is either homogeneous
(Figure 5(a), torus of relative permittivity of 2.25) or
inhomogeneous (Figure 5(b), torus of relative permit-
tivity of "¼ 2.5 on the left-hand side and of "¼ 2þ 0.5i
on the right-hand side). The torus is placed on the
grating in such a way that the resulting geometry does
not exhibit any symmetry.

The retrieved map of permittivity of the homoge-
neous torus is shown in Figure 6. One observes that the
resolution decreases as one moves away from the
grating so that the inner hole disappears. This was
to be expected since the high resolution comes from
the (�1, 0) order of the grating, which is

strongly evanescent. The lack of homogeneity of the
torus can be explained by the fact that the near-field
calculation in the inverse problem is not performed
rigorously. It assumes that the object is deposited on a
homogeneous multilayer and thus it does not account
for the hot spots that appear at the edges of the
grating pads.

Figures 7 and 8 display the real and imaginary
parts of the relative permittivity of the inhomogeneous
torus. The torus is accurately retrieved and the
absorption is clearly localized. Comparing Figure 6
with Figures 7 and 8 shows that the reconstruction is
not deteriorated by the presence of inhomogeneous
absorption.

4.2. Imaging with a priori information

We now introduce some a priori information in the
reconstruction procedure. We assume that the relative
permittivity of the objects under study is real and in the
range [1; 2.25]. This knowledge corresponds for exam-
ple to practical applications in optical imaging of
lossless dielectric nanocomponents. Other cases can be
considered, with different ranges of permittivity.
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at altitude z¼ �/40 of the real part of the relative permittivity for different configuration. The two spheres are in (a) an
homogeneous background, (b) on a glass substrate, (c) on the grating. The grating pads are depicted with green squares.
(The color version of this figure is included in the online version of the journal.)
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The aim of this section is to show that a limitation of
the range of permittivity leads, in the inversion
procedure, to an improvement of the quality of the
reconstructed image. We first consider two minute

spheres of relative permittivity 2.25 with radius a¼ �/
40 separated by a distance of �/15 for three different
positions on the grating. The reconstructed map of
permittivity displayed in Figure 9 is very accurate

Figure 5. Torus on the nanostructured substrate with outer diameter �/4.5, inner diameter �/10, height �/17. (a) Homogeneous
tore of relative permittivity of 2.25. (b) Inhomogeneous torus of relative permittivity "¼ 2.5 on the left side and "¼ 2þ 0.5i on the
right side.
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Figure 6. Image of the homogeneous torus. (a) Map of relative permittivity in the (x, y) plane at z¼ �/125. (b) Relative
permittivity versus x/� along the dashed line in (a). (c) Map of relative permittivity in the (x, z) plane at y¼ 0.
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Figure 7. Image of the inhomogeneous torus. (a) Map of the real part relative permittivity in the (x, y) plane at z¼ �/40. (b) Real
part relative permittivity versus x/� along the line plotted in dashed line in (a). (c) Map of the real part of the relative permittivity
in the (x, z) at y¼ 0.
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whatever the position of the spheres. Note that without
the a priori information, the inversion procedure would
not be able to distinguish the two spheres. To further
point out the improvement brought about by incorpor-
ating a priori information in the reconstruction proce-
dure, we display in Figure 10(a) the reconstructed map
of permittivity of the homogeneous torus depicted in
Figure 5(a). The image of the torus obtained with
a priori information is almost perfect. If one decreases
the size of the torus down to �/7 for the outer diameter

and �/15 for the inner diameter the reconstructed image
with a priori information is still fair (see Figure 10(b)),
while that obtained without a priori information does
not display the inner hole, see Figure 10(c).

4.3. Robustness with respect to noise

In this section, we analyze the robustness of our
inversion scheme when an uncorrelated noise is added
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Figure 8. Image of the inhomogeneous tore, same as Figure 7 but for the imaginary part of the relative permittivity. (The color
version of this figure is included in the online version of the journal.)
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Figure 10. (a) Reconstruction with a priori information for the torus described in Figure 5(a). (b)–(c) Reconstruction with and
without a priori information of a torus built with a cylinder of diameter of �/8 and a height of �/17 with a hole inside of �/15 of
diameter. (The color version of this figure is included in the online version of the journal.)
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Figure 9. Same as in Figure 4 but the two spheres are separated by a distance of �/15 and use of a priori information. (The color
version of this figure is included in the online version of the journal.)
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to the scattered field. We have chosen two kind of

noise. The first one (noise A) corrupts each component

of the scattered field as,

Re½ ~fl;vðrkÞ� ¼ Re½ fl;vðrkÞ� þ uAr�l;v ð20Þ

Im½ ~fl;vðrkÞ� ¼ Im½ fl;vðrkÞ� þ uAi�l;v ð21Þ

where v stands for the component along the x, y, or

z axes. �l;v and �l;v are random numbers with uniform

probability density in [�1, 1], and u is a real number

smaller than unity that monitors the level of the

noise. Ar¼max[Re( fl;v)]�min[Re( fl;v)] and Ai¼max

[Im( fl;v)]�min[Im( fl;v)]. The second one (noise B) is

defined as

Re½ ~fl;vðrkÞ� ¼ Re½ fl;vðrkÞ�ð1þ u�l;vÞ ð22Þ

Im½ ~fl;vðrkÞ� ¼ Im½ fl;vðrkÞ�ð1þ u�l;vÞ: ð23Þ

It is obvious from the definition of the two noises that

the first one corrupts strongly the weak value of the

field.
Figure 11 shows the evolution of the resolution on

two dipoles versus different values of u for the two

noises presented in Equations (20) and (22). Notice

that for the noise A and value of u¼ 0.1 (Figure 11(a))

the two dipoles are not retrieved and that the edge of
the grating pad appear, while with a priori information
(Figure 11(e)) the resolution is achieved. Notice that
the images are similar with noise A (u¼ 0.05) and with
noise B (u¼ 0.3). This shows that the noise A is more
disturbing than the noise B, as mentioned above.

Figure 12 provides the same study but for the
homogeneous torus presented in Figure 5(a). One can
see that for the larger object, compare with the dipoles,
the effect of the noise is stronger. A small value of u for
the noise A does not permit us to retrieve the torus
(Figure 12(a)) except when a priori information is used
(Figure 12(d )).

For the noise B the torus is only retrieved with
u¼ 0.1 (Figure 12(b)), while with a priori information
the torus is perfectly retrieved with u¼ 0.2.

5. Conclusion

In conclusion, we believe that grating-assisted optical
diffraction tomography combined with sophisticated
inversion schemes could be a powerful tool for imaging
nanometric structures. A simple Fourier analysis
shows that a power of resolution about �/10 can be
expected with a grating-substrate with period �/5.
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Figure 11. Image of two spheres of radius a¼ �/40 and interdistance �/10 symbolized by blue circles. Map in the (x, y) plane at
altitude z¼ �/40 of the real part of the relative permittivity for different noise. With no a priori information: (a) noise A with
u¼ 0.05; (b) noise A with u¼ 0.1; (c) noise B with u¼ 0.3. With a priori information: (d ) noise A with u¼ 0.05; (e) noise A with
u¼ 0.1; ( f ) noise B with u¼ 0.3. (The color version of this figure is included in the online version of the journal.)
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Incorporating a priori information on the range of the
relative permittivity of the objects in the reconstruction
procedure permits us to ameliorate the resolution up to
�/15 and gives a better robustness to the noise.
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Lauer, V. Meas. Sci. Technol. 2008, 19, 074009.
[3] Chaumet, P.C.; Belkebir, K.; Sentenac, A. Phys. Rev. B

2004, 69, 245405.
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Haeberlé, O. Opt. Lett. 2009, 34, 79–81.
[13] Choi, W.; Fang-Yen, C.; Badizadegan, K.; Oh, S.;

Lue, N.; Dasari, R.R.; Feld, M.S. Nat. Methods 2007,

4, 717–719.
[14] Chaumet, P.C.; Belkebir, K.; Sentenac, A. Opt. Lett.

2004, 29, 2740–2742.
[15] Maire, G.; Drsek, F.; Girard, J.; Giovannini, H.;

Talneau, A.; Konan, D.; Belkebir, K.; Chaumet, P.C.;

Sentenac, A. Phys. Rev. Lett. 2009, 102, 213905.

[16] Belkebir, K.; Chaumet, P.C.; Sentenac, A. J. Opt. Soc.

Am. A 2006, 23, 586–595.

[17] Simonetti, F. Phys. Rev. E 2006, 73, 036619.
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is included in the online version of the journal.)
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