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Abstract

The aim of the present work is to validate a full vectorial electromagnetic inverse
scattering algorithm against experimental data. Data were provided courtesy of
Institut Fresnel, Marseille, France. These data were carried out in an anechoic
chamber and correspond to different canonical targets as well as one mysterious
object which is known only by experimentalists who measured the associated
scattered field. The inverse algorithm was first developed in the optical domain
and is adapted herein to the microwave domain. It is an iterative approach
where the parameter of interest, namely the relative permittivity distribution,
is updated gradually by minimizing a cost function describing the discrepancy
between data and those that would be obtained via a forward solver for the
best available estimate of the relative permittivity. The forward solver is based
on the coupled dipole method which was introduced in the seventies to study
the scattering of light by non-spherical dielectric grains. The forward and
inverse schemes are briefly described and various examples are presented that
demonstrate the efficiency of the inverse algorithm.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The aim of inverse scattering problems is to determine geometrical and constitutive
material features of unknown objects from the knowledge of their response to an exterior
excitation. Applications of such problems cover the subsurface probing, non-destructive
testing and imaging systems. Several authors have developed techniques for solving these
nonlinear and ill-posed problems in one, two and three dimensions [1–4]. The most
popular approach is to reconstruct parameters of interest iteratively. Starting from an
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initial guess, the unknown object is retrieved gradually by minimizing a cost function
describing the discrepancy between measurements (data) and scattered fields computed
via a forward solver for the best available estimation of the target under test. In this
framework, the authors have developed three-dimensional inverse algorithms to image
samples in the optical domain [5–9]. These algorithms were elaborated specifically for
optical imaging systems such as microscopes where the goal is to retrieve a sample
deposited on a substrate. Particular attention was paid to improving the resolution. For
instance, in [7, 8, 10] a significant resolution was obtained with an internal reflexion
illumination, i.e. samples to be imaged are illuminated with evanescent waves. This
illumination can be realized with the use of a semi-spherical substrate. The resolution
can even be drastically increased if one deposits the sample on a suitably designed grating
[5, 11]. All these developments were achieved using synthetic data in the optical domain.
One difficulty of using the aforementioned techniques is to measure the electromagnetic fields
(modulus and phase) in the optical regime. There exist however interferometric devices that
are able to measure the phase [12, 13]. We are presently studying this aspect of the optical
imaging problem and unfortunately our inverse algorithms have not yet been tested against
experimental optical data. Nevertheless, we have started to validate the inverse algorithm in
the microwave domain [14] using canonical targets. The aim of the present work is to pursue
the validation of our inverse algorithm against experimental data corresponding to various
targets. The measured scattered fields were provided courtesy of Institut Fresnel, France.

2. Formulation of the forward scattering problem

The coupled dipole method (CDM) was introduced by Purcell and Pennypacker in 1973 for
studying the scattering of light by non-spherical dielectric grains in homogeneous space [15]
and is equivalent to a method of moment [16]. An overview of the CDM can be found in
[17, 18]. The object under study is represented by a three-dimensional cubic array of N
polarizable subunits. The local electric field at each subunit position is derived from the
self-consistent equation:

E(ri ) = Einc(ri ) +
N∑

j=1,j �=i

T(ri , rj )α(rj )E(rj ), (1)

where Einc(ri ) denotes the incident field at the position ri , i.e. the total electric field that would
be observed in the absence of the scattering object. T describes the linear response of a dipole
in homogeneous space [19, 20] and is expressed as

T(r, r′, ω) = e(ik0R)
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with R = r − r′, k0 being the wavenumber in vacuum and I the unit tensor. α(rj ) is the
polarizability of subunit j . According to the Clausius–Mossotti expression, the polarizability
distribution α may be written as

α(rj ) = 3d3

4π

ε(rj ) − ε0

ε(rj ) + 2ε0
, (3)

where d is the spacing of lattice discretization and ε(rj ) is the relative permittivity of the
object. The relative permittivity of the homogeneous background medium is denoted by ε0.
There exist different prescriptions of the polarizabilities [21–24], but in the present study the
expression of the polarizability corresponds to the weak form of the CDM [25, 26], and is
accurate enough for the present study. In fact, with the weak form of the CDM we neglect
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the radiative reaction term [27] which introduces in first approximation an additive term in
the expression of the polarizability. This term depends on

(
k3

0d
6
)
, and as the spacing of

lattice discretization is smaller than the wavelength of illumination, (k0d)3 � 1. Hence, the
addition of the radiative reaction term does not change the value of the polarizability. The
error committed in the computation of the scattered field is small compared to the error in
the measurements. However, in different topics, such as optical forces analysis [28–31] or
the extinction cross-section modeling [32], taking into account the radiative reaction term is
mandatory. The material under test is assumed to be isotropic. Hence, the relative permittivity
ε(rj ) and subsequently the polarizability are both scalars.

Once the linear system represented by equation (1) is solved, the scattered field Ed(r) at
an arbitrary position r exterior to the object is given by

Ed(r) =
N∑

j=1

T(r, rj )α(rj )E(rj ). (4)

The scattered field is collected at M observation points for L successive illuminations. Let
the scattered field corresponding to the lth illumination with l = 1, . . . , L be Ed

l . For sake of
simplicity, equations (1) and (4) are rewritten in a more condensed form:

El = Einc
l + Apl , (5)

Ed
l = Bpl , (6)

where A is a square matrix of size (3N × 3N) and contains all the field susceptibilities
T(ri , rj ). B is a matrix of size (3M × 3N). The matrix B contains the field susceptibilities,
T(rk, rj ), where rj denotes a point in the discretized object, j = 1, . . . , N , while rk is an
observation point, k = 1, . . . ,M . The vector pl = αEl represents the induced dipoles inside
the scattering object for illumination l. Note that matrices A and B do not depend on the
incident field nor on the object under test.

The local electric field at all lattice sites is found by solving iteratively the linear system
represented by equation (5) using the quasi-minimal residual method of Freund and Nachtigal
[33]. The computation of the local electric field can be accelerated by using the fact that the
field-susceptibility tensor depends on the relative positions of the source point and the field
point, rather than on their absolute locations. This means that T(ri , rj ) can be written as
T(ri − rj ). This property of the field-susceptibility tensor allows equation (5) to be cast as
a convolution product which can be computed efficiently using fast-Fourier transform (FFT)
techniques [34–36]. Also, due to the property of the field-susceptibility tensor, the matrix A

is Toeplitz; hence, one needs to store only the first line of the matrix A (one line for each
component). Note that to use FFTs, we need to embed the Toeplitz matrix into a circulant
matrix of a size twice larger than the size of the original one.

3. Formulation of the inverse scattering algorithm

Consider an unknown target, entirely confined in a bounded box � ⊂ R
3, successively

illuminated by an l = 1, . . . , L electromagnetic plane wave. For each illumination l, the
scattered field Ψl is measured on surface �. The inverse scattering problem consists in finding
the complex relative permittivity ε distribution in � such that the corresponding scattering
field Ed matches the measured one Ψ. This ill-posed nonlinear problem is solved iteratively.
A sequence of polarizabilities {αn} is constructed according to the following relation:

αn = αn−1 + andn, (7)
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where αn and αn−1 denote estimates of the unknown polarizability α for iteration steps n and
n − 1, respectively. dn is an updating direction involving the gradient of the cost functional
F(α) with respect to α assuming that the internal fields El do not change. The scalar weight
an ∈ C is determined by minimizing at each iteration step n the cost functional Fn defined as

Fn(αn) =
∑L

l=1 ||Ψl − BαnEl,n||2�∑L
l=1 ||Ψl||2�

= W�

L∑
l=1

||Ψl − BαnEl,n||2�, (8)

with El,n being the total electric field that would be present in � if the polarizability distribution
was αn−1. The field El,n is obtained by solving the dense linear system described by
equation (1) with the polarizability taken equal to αn−1. Substituting the expression of the
polarizability αn derived from equation (7) in equation (8) leads to a polynomial expression
with respect to the scalar coefficient an. Thus, the minimization of the cost functional Fn is
reduced to a minimization of a simple cost function Fn(an) for which the unique minimum is
reached for

an =
∑L

l=1〈BdnEl,n|Ψl − Bαn−1El,n〉�∑L
l=1 ||BdnEl,n||2�

, (9)

where 〈·|·〉� denotes the inner product in L2. As an updating direction dn, we take the conjugate
gradient direction

dn = gn;α + γndn−1, (10)

with gn;α being the gradient of the cost functional F with respect to the polarizability assuming
that the internal fields El do not change:

gn,α = −W�

L∑
l=1

E∗
l,n · B

†
(Ψl − Bαn−1El ), (11)

in which u∗ represents the complex conjugate of u and B
†

denotes the transpose complex
conjugate matrix of the matrix B.

The scalar coefficient γn is defined as

γn = 〈gn;α − gn−1;α|gn;α〉�
||gn−1;α||2�

. (12)

The initial guess of the iterative algorithm α0 is estimated with a back-propagation procedure
[7].

4. Numerical experiments

Results of the reconstruction of three-dimensional targets from experimental data are reported
in this section. All data were provided courtesy of Institut Fresnel (Marseille, France).
The parameters of the experimental set-up as well as the different objects under test will
be described elsewhere in the present special section. This database is constituted of five
dielectric targets of different shapes and sizes. The background medium is homogeneous
ε0 = 1. The first object is two cubes connected by a corner, the second one is two spheres
in contact and the third one is an aggregate of 27 spheres. The fourth target is a cylinder
and the last one is only known by the experimentalist who measured the scattered field. This
target is referred to from now on as the mysterious target. All the presented results were
obtained without any a priori information. Note that our inversion algorithm does not use any
regularization technique.
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(d) (e) (f)

(g) (h) (i)

(a) (b) (c)

Figure 1. (a) Target under test: two cubes with relative permittivity ε = 2.4 and of side size
a = 2.5 cm connected by a corner. Centers of cubes are located at (−a/2, a/2, 3a/2) and
(a/2, −a/2, 5a/2). (b) Evolution of the minimized cost function in the log scale, 3 GHz (- -),
5 GHz (-·) and 7 GHz (· · ·). (c) Comparison between the reconstructed real part of the relative
permittivity and the actual one along a line crossing the diagonals of the two cubes as well as the
shared corner of the two cubes (as plotted in a dashed line in (a)) for 3 GHz (- -), 5 GHz (-·) and
7 GHz (· · ·). The full line is the actual profile. (d)–(f) are the map of the reconstructed relative
permittivity in the (x, y) plane at z = 3a/2 for 3 GHz, 5 GHz and 7 GHz, respectively. (g)–(i)
are the map of relative permittivity plotted in the (x, y) plane at z = 5a/2 for 3 GHz, 5 GHz and
7 GHz, respectively. The squares represent the boundaries of cubes.

For the inversion, the spacing lattice of the investigating domain � is d = 5 mm. The
smallest wavelength of the illumination used in the numerical experiments is about λ ≈ 38 mm
and corresponds to the illumination at an operating frequency of 8 GHz. We kept this value
of the spacing lattice fixed for all inversions, in particular for inversions at lower frequencies,
hence ensuring accurate computation of the forward problem. The investigating domain �

is a large cube of size (125 × 125 × 125) mm3. At the operating frequency of 8 GHz, the
volume of the investigating domain � in terms of wavelength is about 36 λ3. All final results
reported correspond to the 200 th iteration. We did not note any marked changes in the results
when continuing iterating. In addition, only the real part of the reconstructed permittivity
is presented since the imaginary part remains very small in all cases. Furthermore, in all
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(d) (e) (f)

(g) (h) (i)

(a) (b) (c)

Figure 2. Same legend as in figure 1.

presented results the initial estimate α0 to start the iterative process is obtained, thanks to the
back-propagation procedure as described in [7].

The measure has been done for two polarizations of the emitting antenna and only one for
the receiving antenna. Data were saved in separate files. We merged the two files and applied
the reciprocity theorem, i.e. switched the role of the emitter and the receiver. Doing so, we
end up with a single polarization of the excitation (the incident field, modeled as a plane wave,
is polarized along the z-axis) and three components of the scattered field.

The numerical computation of the inversion algorithm takes about 10 h, on a computer
of a clock frequency of 3 GHz, to invert one set of the database, i.e. one target at a single
operating frequency. The main time of the computation is spent to solve equation (1). At the
first iteration step, it takes only 1 min to solve the linear system for all angles of incidence while
at the last iteration step the same operation takes about 3 min. The reduced computational
time at the first iteration step is due to the fact that the initial guess provided by the back-
propagation technique [7] corresponds to a weak scatterer for which the iterative computation
of the internal electromagnetic field from equation (1) converges rapidly. Conversely, at the
last iteration step, the object for which the computation of the internal field is performed is of
a higher value of relative permittivity. It is possible to drastically reduce this computational
time by using an extrapolation procedure to generate an efficient initial guess for the field
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(d) (e) (f)

(g) (h) (i)

(a) (b) (c)

Figure 3. Same legend as in figure 1.

[37, 38]. The other operations, i.e. the computation of the cost function, the updating directions
which involve gradients of the cost functional with respect to the parameter of interest, etc,
take only 15 s.

4.1. Two identical cubes

As a first example, we consider the target constituted by two dielectric cubes of relative
permittivity ε = 2.4 and of side size a = 2.5 cm connected by a corner as depicted in
figure 1(a). Inversions have been performed at three frequencies of 3, 5 and 7 GHz.
Reconstructed profiles are plotted in figures 1(d)–(i) while the evolution of the minimized
cost function in log-scale versus iteration step is presented in figure 1(b). Figure 1(c) presents
the comparison between the actual permittivity profile and the reconstructed ones along a
line crossing the diagonals of the two cubes as well as the shared corner of the two cubes.
Figures 1(d)–(f) represent the reconstructed permittivity in the (x, y) plane at z = 3a/2 (center
of one of the two cubes) for frequencies of 3, 5 and 7 GHz, respectively. Figures 1(g)–(i)
also represent reconstructed permittivity in the (x, y) plane for frequencies of 3, 5 and 7 GHz,
respectively, but at different z positions (z = 5a/2 which corresponds to the center of the
second cube).
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(d) (e) (f)

(g) (h) (i)

(a) (b) (c)

Figure 4. (a) Target under test: two spheres in contact with relative permittivity ε = 2.6 and of
radius r = 2.5 cm. Centers of spheres are located at (−r, 0, 0) and (r, 0, 0). (b) Comparison
between the reconstructed permittivity and the actual one along the x-axis for 3 GHz (- -),
4 GHz (-·) and 6 GHz (· · ·) (for y = z = 0 (up) and for y = 0, z = −2 cm (down)). The full
line represents the actual profile. (c) Evolution of the minimized cost function in the log scale for
3 GHz (- -), 4 GHz (-·) and 6 GHz (· · ·). (d)–(f) are the map of the reconstructed relative permittivity
in the (x, y) plane at z = 0 for 3 GHz, 4 GHz and 6 GHz, respectively. (g)–(i) as the previous
figures but for z = −2 cm. Circles represent boundaries of the spheres.

At the lowest frequency, i.e. 3 GHz, the resolution of the reconstructed permittivity is
‘poor’. Indeed, figures 1(d) and (g) show that neither the relative permittivity nor the shape
of the two cubes are correctly retrieved. This is emphasized in figure 1(c) where quantitative
comparison between the actual and reconstructed profiles is presented. This is not surprising
as the wavelength of illumination is about λ ≈ 10 cm while the characteristic dimension of
the cubes is a = 2.5 cm ≈ λ/4 . Increasing the frequency up to 5 GHz, the reconstructed
permittivity gets closer to the actual one (see figure 1(c)) and the reconstructed cubes plotted
in figures 1(e) and (h) are now centered at the right positions. However, the shape of the cubes
is still not well retrieved. For the inversion at 7 GHz, one can note in figures 1(f) and (i) that
the retrieved shape clearly improved and now fits the actual shape.

We have also applied our inversion algorithm to retrieve the target from only one
polarization data. Figure 2 presents results in the case where only the co-polarization data
are used. Maps of reconstructed relative permittivities (figures 2(d)–(i)) are similar to those
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(a)

(d)

(b)
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(f)

Figure 5. (a) Comparison between the reconstructed real part of the relative permittivity and the
actual one along the x-axis for 4 GHz (- -), 5 GHz (-·) and 6 GHz (· · ·) (for y = z = 0 (up) and
for y = 0, z = −2 cm (down)). The full line represents the actual profile. (d) Evolution of the
minimized cost function in the log scale for 3 GHz (iteration 1–25), 5 GHz (iteration 26–50) and
6 GHz (iteration 51–75). (b) and (c) are the reconstructed relative permittivity distribution plotted
in the (x, y) plane at z = 0 for 5 GHz and 6 GHz, respectively. (e) and (f) as the previous figures
but for z = −2 cm. Circles represent boundaries of the spheres.

Table 1. Relative error in per cent between the scattered field given by the experiment and the
scattered field computed theoretically from the actual shape.

Frequency Co-polarization (%) Cross-polarization (%)

3 GHz 14 94
5 GHz 5 56
7 GHz 8 44

obtained in the case where the inversion is performed using the full vectorial scattered field.
This may be due to the fact that the two cubes do not depolarize the incident field.

Figure 3 presents the results of the inversion in the case where only the cross-polarization
data are used. In this case, it is clear that the unknown object is not retrieved. Note that
at the operating frequency of 7 GHz, the imaginary part is between −1 and 1. In order
to understand the failure of the retrieval of the target, we compared the measured scattered
field to the scattered field provided by the forward solver using the actual target. From this
comparison, we observe that the co-polarization data are accurately measured and that the
cross-polarization data are extremely noisy. This assumption is emphasized in table 1 where
the relative error (L2 norm) between the measured scattered and the computed one is reported.

The relative error corresponding to the cross-polarization data is high and is, for instance,
close to 100% at 3 GHz. With such a high level of noise in the data, it is not possible to
retrieve any information with respect to the target. Moreover, one can note that the relative
error decreases for the cross-polarization data as the operating frequency increases. In fact
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. (a) Target under test: 27 spheres of radius a = 0.795 cm with relative permittivity
ε = 2.6. The 27 spheres are arranged such that they form a cube. The location of the center
sphere at the center of the cube is (0, 0, 2a) cm. (b) Evolution of the minimized cost function in
the log scale, 6 GHz (- -), 7 GHz (-·) and 8 GHz. (c) Relative permittivity versus x for y = 0 cm
and z = 2a for 6 GHz (- -), 7 GHz (-·) and 8 GHz (· · ·). (d)–(f) are the map of the reconstructed
relative permittivity in the (x, y) plane at z = 2a for 6 GHz, 7 GHz and 8 GHz, respectively.
(g)–(i) are the map of relative permittivity plotted in the (x, z) plane at y = 0 cm for 6 GHz,
7 GHz and 7 GHz, respectively. Circles represent boundaries of the spheres.

as the frequency increases, the size of the object in terms of wavelengths increases as well;
hence, the scattering magnitude increases. We guess that from the experimental point of view,
it is easier to measure signals with high magnitude than signals of low magnitude.

4.2. Two identical spheres in contact

In this subsection, results of the reconstruction of two identical spheres in contact as shown in
figure 4(a) are presented. The radius of each sphere is r = 2.5 cm and of relative permittivity
ε = 2.6. Our inversion scheme, at the frequency of 3 GHz, provides a reconstructed relative
permittivity smaller than the actual one (figure 4(b)) and the shape of the reconstructed spheres
does not clearly indicate that the target under test is spherical. However, the reconstructed
permittivity is much larger than that obtained for the two cubes. This is illustrated by
figures 4(d) and (g) to be compared to figures 1(d) and (g). Significant improvements are
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Figure 7. Reconstruction of the map of relative permittivity in the (x, y) plane for different values
of z and for the frequency of 8 GHz. The inter-distance among the different planes is 5 mm. The
color scale ranges from ε = 0.5 up to ε = 3.6.

obtained with the inversion at 4 GHz as presented in figures 4(e) and (h). Comparisons
between the reconstructed profile and the actual one along two parallel lines at z = 0
cm and z = −2 cm are presented in figures 4(b) (top curve and bottom curve). The
reconstructed permittivity in the (x, y) plane at z = 0 cm, figure 4(e), shows that the relative
permittivity increases dramatically in the area where the spheres are in contact. Inversion at
the higher frequency of 6 GHz does not converge as showed by the cost function plotted in
figure 4(c), and the map of the reconstructed relative permittivity presented in figures 4(f)
and (i) corresponding to the lower value of the cost function is far from the actual profile.
When the frequency hopping is applied, i.e. the final result obtained at 4 GHz after 25
iterations is used as an initial guess for the inversion at 5 GHz, the reconstruction presented in
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(a) (b) (c)

Figure 8. (a) Target under test: cylinder of radius a = 4 cm, length 2a with relative permittivity
ε = 3.05. (b) Map of the reconstructed relative permittivity in the (x, y) plane at z = 0 cm.
(c) Map of the reconstructed relative permittivity in the (x, z) plane at y = 0 cm. The square in
(b) and the circle in (c) represent the boundaries of the cylinder.

figures 5(a), (b) and (e) show that the two spheres are now perfectly retrieved. The
reconstruction is improved drastically when pursuing the frequency hopping approach, i.e.
when the final result obtained at 5 GHz after 25 iterations is used as an initial guess for the
inversion at 6 GHz as illustrated in figures 5(a), (c) and (f) to be compared to figures 4(f)
and (i).

4.3. Aggregate of 27 spheres

The object under study in this subsection is as depicted in figure 6(a). It is constituted of
an aggregate of 27 spheres of relative permittivity ε = 2.6 and of radius a = 0.795 cm.
Inversions have been performed at three frequencies of 6, 7 and 8 GHz. The evolution of
the minimized cost function in the log scale versus iteration step is presented in figure 6(b).
Figure 6(c) presents the reconstructed profile along the x-axis for y = 0 cm and z = 2a.
Figures 6(d)–(f) represent the reconstructed permittivity in the (x, y) plane at z = 2a for
frequencies of 6, 7 and 8 GHz, respectively. Figures 6(g)–(i) also represent reconstructed
permittivities, but in the (x, z) plane for y = 0 for frequencies of 6, 7 and 8 GHz,
respectively.

At the frequency of 6 GHz, figures 6(d) and (g), the side size of the aggregate is about
one wavelength while the size of the spheres is about λ/3. Due to the small size of the spheres
compared to the wavelength, it is difficult to retrieve such small details. Hence, inversion at
this frequency provides only a rough estimate of the target under test. The retrieved object
looks like a homogeneous object of the same size as the size of the cube of the aggregate of
the spheres and of relative permittivity smaller than that of the sphere. The underestimated
value of the reconstructed relative permittivity may be explained as a compensation to the
large retrieved volume. Results of inversions at higher frequency, 7 GHz and 8 GHz, show as
expected the details. The map of the reconstructed relative permittivity at 8 GHz in the (x, y)

plane is presented in figure 6(f). The spheres are now clearly distinguished. The improvement
of the resolution is obviously related to the decrease of the wavelength of illumination. Note
that the map of relative permittivity in the (x, z) plane, figure 6(i), shows that the sphere is not
retrieved along the z-axis. This is due to the reduction by a factor of 2 of the Ewald sphere in
the z-direction compared to the Ewald sphere in the x-direction.

Figure 7 presents the results of our inversion at the frequency of 8 GHz in the entire
investigating domain �. Figures 7(j) and (p) represent the reconstructed relative permittivity
distribution in the first and the third layers of the assembly of the spheres, respectively. It
shows that the spheres located at the corner of the cube appear with a relative permittivity
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Figure 9. Reconstruction of the map of relative permittivity in the (x, y) plane for different values
of z and for the frequency of 6 GHz. The inter-distance among the different planes is 5 mm. The
color scale ranges from ε = 0.8 up to ε = 2.7.

smaller than the other spheres. The sphere at the center of the cubes is retrieved with a higher
relative permittivity (3.6).

4.4. Cylinder

In this subsection, results of the reconstruction of a cylinder of radius a = 4 cm, of length 2a

and of relative permittivity ε = 3.05 (figure 8(a)) are presented. We present only the results
of our inversion at the frequency of 3 GHz and for the 13th iteration step. The cost function
increases dramatically. At the 19th iteration, the retrieved relative permittivity is between
[−100; 80] and the cost function is above 1018. Such behavior of the inversion indicates that
for this case, the inversion diverged. For the other frequencies, our inversion scheme fails to
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Figure 10. As in figure 9 but for the imaginary part of the relative permittivity. The color scale
ranges from Im(ε) = −0.3 up to Im(ε) = 0.6.

retrieve the cylinder as well. This is due to the high value of the actual relative permittivity
correlated with the large size of the cylinder compared to the wavelength of illumination.
Indeed, at the frequency of 4 GHz the size of the cylinder is twice the wavelength inside the
cylinder. Our method as described in the present paper is not capable of retrieving such strong
targets. For these cases, regularization techniques and/or a priori information are mandatory.

Notwithstanding the difficulty of reconstructing strong targets, we were however able to
obtain some information regarding the position of the cylinder. Figures 8(a) and (b) present
the map of relative permittivity in the (x, y) plane and (x, z) plane, respectively. One can note
that the cylinder is correctly localized in the (x, y) plane with a relative permittivity of about
3 for the maximum value. But the retrieved shape does not fit properly the actual one. In the
(x, y) plane, neither the localization nor the shape of the cylinder are properly retrieved.
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(a) (b) (c)

Figure 11. (a) Evolution of the minimized cost function in the log scale versus iteration step for 6
GHz. (b) Guess of the mysterious object, where each color has been assigned to a given value of z.
(c) Shape given by an iso-surface of the reconstructed permittivity profile at the level ε = 2.1.

4.5. Mysterious object

The object under study for this subsection is unknown. Hence, in figure 9 we plot the map
of the relative permittivity in the (x, y) planes for all values of z. Two successive planes
are separated by the distance d which is the value of the spacing lattice used to grid the
investigating domain �. From the observations of the different images, one can see different
objects: plane 8 shows three spots which could be three spheres, as well as planes 11, 13
and 16. Hence, we can deduce that the mysterious object is constituted by 12 spheres. Note
that plane 12 shows six spots. This might be seen as a plane containing the top of the three
spheres located at plane 11 and the bottom of the three spheres of plane 13. In figure 10, the
imaginary part of the relative permittivity is plotted. The highest reconstructed value is 0.6.
This value leads to a skin depth much lager than the size of the object. One can conclude that
the reconstructed object is purely dielectric.

In figure 11(a), the cost function is plotted. It shows a good behavior of the convergence
of the algorithm. Figure 11(c) shows an iso-surface at a level of ε = 2.1. It reveals 12
spherical-shaped objects. Hence, in figure 11(b) we draft an idea of the mysterious object.
We think that the object is constituted of 12 different spheres as shown in figure 11(b). The
radius of each sphere is about 8 mm and of relative permittivity ε = 2.6. The 12 spheres are
distributed in four different planes, and the three spheres in each plane are located at the top
of an equilateral triangle.

5. Conclusion

In this paper, we have tested our inversion scheme against real data. We performed
blind inversion and did not use any a priori information (relative permittivity is complex).
Satisfactory results have been obtained due to the fact that our inversion is based on retrieval of
the polarizability rather than the standard permittivity distribution combined with our choice
of the initial guess which is deduced from the back-propagation procedure. For the two known
targets treated in this paper, the proposed inversion algorithm succeed in retrieving the shape
as well as the constitutive material of the targets under test. For the mysterious target, we
provided information about the positions, shapes, and the constitutive materials.
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