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Two-dimensional target characterization using inverse profiling approaches with total-field phaseless data is
discussed. Two different inversion schemes are compared. In the first one, the intensity-only data are exploited
in a minimization scheme, thanks to a proper definition of the cost functional. Specific normalization and start-
ing guess are introduced to avoid the need for global optimization methods. In the second scheme [J. Opt. Soc.
Am. A 21, 622 (2004)], one exploits the field properties and the theoretical results on the inversion of quadratic
operators to derive a two-step solution strategy, wherein the (complex) scattered fields embedded in the avail-
able data are retrieved first and then a traditional inverse scattering problem is solved. In both cases, the
analytical properties of the fields allow one to properly fix the measurement setup and identify the more con-
venient strategy to adopt. Also, indications on the number and types of sources and receivers to be used are
given. Results from experimental data show the efficiency of these approaches and the tools introduced.
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1. INTRODUCTION

In inverse scattering problems, one looks for a quantita-
tively accurate description of the electrical and geometri-
cal properties of a region under test given a set of incident
fields and measures (both in amplitude and phase) of the
corresponding scattered fields on a generic surface lying
outside the region under test [1]. Due to their wide range
of potential applications, the development of accurate and
reliable techniques for solving this kind of problem is to-
day still an important challenge [2—4].

Leaving aside peculiar characteristics of the different
approaches proposed in the literature, one of the common
drawbacks is the need to measure both amplitude and
phase of the scattered fields. As a matter of fact, in sev-
eral areas of applied science, the phase distribution of the
scattered fields is often too corrupted by noise to be use-
ful, or there is no phase measurement at all, e.g., optical
measurement setups. Even if there is some effort nowa-
days to provide experimental setups capable of measuring
all the components of the scattered fields [5,6], it is of
great importance to develop approaches that image
samples from only amplitude data, as these latter would
open the way to more simple and cost effective experimen-
tal setups. In addition, it is also important to remark
that, in most applications, the actual quantity measured
is the total field. In fact, unless the incident field is pro-
vided by a directive antenna, the measured field contains
both the incident and the scattered field, so that the total
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field has to be processed instead of the scattered field as
would be done with the usual methods.

To overcome the above limitations, several approaches
for solving inverse scattering problems from intensity-
only data have been proposed in the literature [7-13].
Among them, an approach based on only amplitude mea-
surements of the total fields has been recently proposed,
first with reference to the case of measures taken on a
closed curve surrounding the domain under test [7] and
then to that of transmitters and receivers placed over two
truncated lines somehow enclosing the investigating do-
main [13]. In both cases, the proposed procedure splits
the imaging problem into two different steps. In the first
step, the scattered field is estimated from the measure of
the square amplitude distribution of the total field, while
the second step is aimed at estimating the unknown di-
electric properties from the estimated scattered fields
(modulus and phase). In summary, the first step allows us
to estimate the input data for the second one, which is a
traditional inverse scattering problem.

As recalled throughout this paper and in previous con-
tributions [7,13], the separation of the problem into two
different steps allows a better control of the overall non-
linearity of the inverse problem compared with single-
step procedures. In fact, the exploitation of theoretical re-
sults on the inversion of quadratic operators [14] and field
properties representations [15,16], leading to design con-
straints on the measurement setup, allows one to success-
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fully solve the first step, while all the available knowledge
about traditional inverse scattering problems is exploited
in the second one. More recently, such an imaging tech-
nique has been extended to a three-step procedure, in
which a phase-retrieval (PR) problem is preliminarily
solved to estimate the phase of the incident field from its
measured amplitude [17]. By doing so, the resulting im-
aging strategy relies solely on amplitude-only data.

However, the above mentioned inversion approaches
[7,13,17] can be actually applied provided that some con-
ditions on the measurement setup are satisfied. As a mat-
ter of fact, when these conditions do not hold true, the es-
timation of the scattered field from the measured total
field amplitude is not reliable. In these cases, it is there-
fore of interest to develop new, accurate, and effective in-
verse profiling approaches based on amplitude-only infor-
mation of the total field, once the incident field is known
or estimated in the scattering domain and on the mea-
surement curve. In such approaches, the aim is to solve
the imaging problem in a single step, without previously
estimating the scattered field embedded in the measure-
ments. This would require reformulation of the inverse
scattering problem to take into account that the available
data are intensity-only. On the other hand, at least in
principle, particular constraints on the measurement
setup are not required. Therefore, these approaches are
expected to be useful in all those cases where the two-step
strategy [7,13] or its generalization [17] cannot be used.

The aim of this paper is therefore to introduce a novel
one-step imaging strategy based on amplitude-only total
field data and to compare and discuss, by using experi-
mental data, its performance with that of the two-step
strategy.

It is worth noting that the idea of directly incorporating
the square amplitude distributions of the total field in the
inversion scheme is not new in the literature [10-12].
With respect to these contributions, the approaches pro-
posed and discussed in this paper have interesting and
complementary characteristics. First, unlike [10], we do
not make use of a priori information in the inversion pro-
cess; rather, we take advantage of a suitable starting
guess achieved by means of a simple modification of the
widely used backpropagation solution [18]. Moreover, un-
like [12], the minimization scheme herein adopted ex-
ploits a local optimization procedure based on an efficient
conjugate gradient-fast Fourier transform (CG-FFT)
scheme and thus avoids the use of time-consuming global
optimization algorithms.

In this respect, it is also worth noting that the use of a
proper weighting of the cost functional to minimize on the
basis of the properties of the intensity-only data pattern
as well as the available knowledge in phase retrieval pro-
cedures [14] allows us to improve the data fitting and, of
course, the final reconstruction in terms of the permittiv-
ity and conductivity of the unknown targets. Last but not
least, let us remark that our approaches are based on the
contrast source-extended Born (CS-EB) inversion scheme,
which allows us to reduce the degree of nonlinearity [19]
of the inverse scattering problem and which achieves im-
proved permittivity and conductivity map reconstructions
in many cases [20].

The paper is organized as follows. In Section 2, the
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adopted geometry configuration is presented and the
mathematical model is given. The sampling properties
and representations of the involved electromagnetic fields
are also recalled. In Section 3, the single-step inversion
scheme is thoroughly described, together with the weight-
ing strategy and the adopted modified backpropagation as
initial solution. The features and limitations of the two-
step approach are briefly sketched in Section 4. Section 5
is devoted to assessing and comparing the performances
of the two approaches by means of experimental data con-
cerning metallic and dielectric inhomogeneous targets
collected at the Institute Fresnel of Marseille. Conclu-
sions follow.

2. MATHEMATICAL MODEL AND FIELD
PROPERTIES

The geometry of the problem studied in this paper is
shown in Fig. 1, where one or more two-dimensional ob-
jects of arbitrary cross section () are confined in a
bounded domain D. The embedding medium (), is as-
sumed to be infinite and homogeneous with permittivity
ep=¢g0&p, and permeability pw=pug (g9 and pg being the per-
mittivity and permeability of the vacuum, respectively).
The scatterers are assumed to be inhomogeneous cylin-
ders with a permittivity distribution e(r)=ggye,(r); the en-
tire configuration is nonmagnetic (u=pug). A right-handed
Cartesian coordinate frame (O,u,,u,,u,) is defined. The
origin O can be either inside or outside the scatterer, and
the z axis is parallel to the invariance axis of the scat-
terer. The position vector OM can then be written as
OM-=r+zu,. The line sources that generate the electro-
magnetic excitation (denoted as 7', in Fig. 1) and the el-
ementary probes collecting the data (R, in Fig. 1) are lo-
cated at (r;);<;<z, on a circle I' of radius Ry. Taking into
account a time factor exp(iwt), in the transverse magnetic
(TM) case, the time-harmonic incident electric field cre-
ated by the /th sources is

2b

Fig. 1. (Color online) Geometry of the problem. A two-
dimensional target with cross section Q. I' (with radius b) is the
circle where the sources (7',) and probes (R,) are located. a is the
radius of the minimum circle enclosing the unknown targets.



D’Urso et al.

i i WHo (9
E'/(r) = E(r)u, =ATH0 (kplr = 1)), 1)

where A is the strength of the electric source, o the angu-
lar frequency, Hff) the Hankel function of zeroth order
and second kind, and %, the wavenumber in the sur-
rounding medium.

Under these hypotheses and omitting the exp(iwt)
time-dependence term, the scattering equations describ-
ing the total field for each illumination condition can be
formulated as two coupled contrast-source integral rela-
tions [18], the observation or data equation Eq. (2) and
the coupling or state equation Eq. (3):

E(rel)=E(rel)+Ejrel)

=Ejrel)+ f J G(r,r)J,(x")dr',  (2)
D

Jy(r € D)= x(r € D)Ei(r € D) + x(r € D)
X f f G(r,x')J;(r")dr’, (3)
D

where x(r)=¢,(r)—¢;, denotes the permittivity contrast,
which vanishes outside D; G(r,r’) is the two-dimensional
free-space Green function and J(r)=x(r)E(r) corresponds
to the contrast source.

The overall aim of the imaging problem we want to
solve is to determine the two-dimensional contrast func-
tion x(r) in D starting from the knowledge of the incident
fields Ej(r € I') on the probing curve I" and from an incom-
plete (because only a finite number of measurements can
be performed) and inaccurate (because the measurements
are affected by error) knowledge of the intensity of the to-
tal fields |[E;(r D)%, 1 e(1,...,L). )

Because |E|?=|E/[>+|E5|>+2%e(E°E" ), it proves fruitful
to briefly recall properties and possible representations of
both scattered and incident fields and then of |E2, |E®?

and of the interference term Me(ESE!). As discussed in
the following, these properties will allow us to quantify
the amount of independent data at our disposal for solv-
ing the imaging problem at hand, to sample the intensity
data in an accurate and nonredundant fashion, and to de-
termine the maximum amount of information about the
targets one can extract from the available data. Moreover,
as in [7,13,17], exploitation of these properties provides
the guidelines for design of an effective measurement
setup.

With reference to the geometry depicted in Fig. 1, it is
known that the scattered field corresponding to a given
source can be accurately represented with a finite number
of Fourier harmonics given by 2k,Rp, Rp being the radius
of the minimum circle enclosing the targets [16]. As a
Fourier series can be turned into a Dirichlet sampling se-
ries, 2k,Rp samples uniformly spaced in angle accurately
represent each scattered field as well. From reciprocity
[16], the number of nonsuperdirective independent inci-
dent fields impinging on the domain under test is 2k, Rp
as well. Hence, by excluding superdirective sources,
2k, Rp plane waves uniformly spaced in angle form a com-
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plete family of independent incident fields. Therefore, as a
function of the incident angle ¥; and of the receiving angle
3,, the scattered field can be accurately represented by a
number of samples given by (2k,Rp) X (2k,Rp)=(2k,Rp)?,
where, as discussed in [7], only half of these samples is
actually independent.

As far as the incident fields measured on I' are con-
cerned, a different result holds true. In fact, by parallel-
ing the above reasoning to the representation of the inci-
dent field in D, one can prove that each incident field on I'
can be accurately represented by 2k Ry Dirichlet
samples, and that 2k, R (nonsuperdirective) independent
incident fields (constituted by plane waves uniformly
spaced in angle) exist therein. Therefore, as discussed for
the scattered field, the incident field on I" as a function of
both angles ¥; and U, can be accurately represented by a
number of samples given by (2k,Ry) X (2ksRr) = (2k,Ry).
Note that also in this case only half of these samples is
actually independent [7].

When considering the square amplitude patterns of the
above fields, the number of samples required for a faithful
representation becomes four times larger (with respect to
amplitude and phase measurements) as the sampling
step has to be halved along each of the two coordinates.
Therefore, |ES(rel)> requires (4k,Rp) X (4kyRp)
=(4kyRp)?> samples and |Ei(re@)|?> requires (4kyRy)
X (4kyRy) =(4kpRy)? samples.

To accurately represent |E[> on T, being |E|*=|E‘?
+|E5|2+2Re(E°E" ), one needs a number of samples equal
to the maximum between (4kyRp)? and [2k,(Rp+Rp)]1%,
the latter being the number of samples required to repre-

sent the term 29‘§e(EsEi*) on I" [13]. Of course, only half of
these samples is independent [7].

3. SINGLE-STEP APPROACH FOR
INTENSITY-ONLY INVERSE PROFILING

Traditionally, in standard inverse scattering problems,
one assumes the knowledge of the total fields in both am-
plitude and phase. Here, the problem we want to solve
consists of retrieving the dielectric characteristics within
a region under test from measurements of the square am-
plitude distribution of the total field, once the incident
field is known or estimated as in [17]. The approach de-
scribed in this section corresponds to a single-step proce-
dure based on the minimization of a discrepancy criterion
between the amplitudes of the simulated and measured
total fields. This minimization problem is recast into a
CS-EB formalism as in [20]. A brief recall of the deriva-
tion and main features of the CS-EB scattering model is
reported in Appendix A.

A. Representation of Unknowns

In the CS-EB inversion method [18], both the contrast x
and the induced current J=yE inside the targets are as-
sumed as unknowns. In order to lower the degree of non-
linearity [19] and therefore the difficulty of the inverse
problem with respect to parameters embedding dielectric
characteristics, the traditional scattering equation Eq. (3)
is replaced by a new coupling equation, the CS-EB equa-
tion [20], given by
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Jz(r)—§(r)E§(r)=§(r)fj G(r,x")[Jy(x") = Jy(r)]dr’
D

= &) Gpoal)), (4)

NV
g(r) - 1- X(I')fD(I'), fD(r) - » (r,r r,

Gmad(Jl)=ff G(r,x)[Jy(r") - J;(r)]dr’
D

=ff G(r,r")J,(x")dr’ - J;(r)fp(r). (5)
D

For the sake of simplicity, equations Eq. (2) and Eq. (4)
may be rewritten using symbolic notations as

E? = KJI; Jl = fE; + é:Gmod(Jl)r (6)

where G,,,q(J;) is the new scattering operator relating the
induced current inside the scattering domain to the scat-
tered field outside. It is worth noting that, despite that
the CS-EB model defined in Eq. (4) is just a simple rewrit-
ing of the traditional contrast source model, it has proved
to be a more effective tool to formulate and solve both for-
ward and inverse scattering problems [20]. Further, while
its derivation was inspired by some mathematical and
physical considerations related to presence of losses in the
host medium and/or in the targets [20], processing of ex-
perimental data (both amplitude and phase) has shown
that accurate and reliable results can also be achieved for
lossless inhomogeneous targets in free space [21].

The ill-posedness of the inverse scattering problem is
also dealt with by looking for finite-dimensional represen-
tations of both the unknowns [22]. We thus consider

P

) = D, a,i(r), (7)
p=1
Q

Jix)= Dk, (r)  Vi=1,... L, (8)
g=1

where {¢, 5:1 and {¢q}§=1 are two orthonormal basis func-
tions taken here as spatial Fourier harmonics owing to
the lack of a priori information on the unknown scatter-
ers. Of course, according to the above results on the field
properties, the number of the unknown coefficients {ap}f::l
and {cq}f;?:1 has to be lower than the number of indepen-
dent data one has at one’s disposal for the inversion as
discussed in Section 2; see also [22]. In particular, note
that, as far as the choice of P is concerned, the properties
of the scattered fields recalled in Section 2 allow one to
state that, for any given Rp, one can determine the maxi-
mum amount of information that can be extracted in the
inverse scattering step, thus allowing one to fix the maxi-
mum number of unknown coefficients for the contrast
function in Eq. (7) that can be reliably retrieved.
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B. Discrepancy Criterion
The discrepancy criterion between the measured fields
and the simulated ones considered in the following is
given by

L

JE) = X a1 - |Ej+ KJ (O, )
I=1

where I°® represents the available intensity measure-
ments of the total field, ¢; is a weighting coefficient set in
such a way that the total field intensities corresponding to
the different scattering experiments have an equal
weight, and Wy denotes a weighted L2 norm on I'. In par-
ticular, al'1=lll‘l’bs\|%V , and a weighted L? norm—rather
than the more usual unweighted one—is used because the
adopted cost functional Eq. (9) embeds the solution of a
phase retrieval problem for the total field.

In these problems, the zeros (or nearly zeros) of the
data pattern (in our case I‘l’bs for each illumination) play a
key role in the faithful estimation of the unknown [14],
and suggest that a different weight can be usefully ex-
ploited here. Accordingly, we choose a weighting function
that emphasizes the contributions to the cost functional
corresponding to small-amplitude data [14]. In particular,
the weighing function w,(r e I') is given by

1

—_— 10
¥rel)+e (10)

wi(rel)=

where the positive regularization parameter ¢ allows one
to manage the exact zeros in the data [14]. Note this
weighting strategy turns out to be particularly effective
when undersampled data (with respect to the rules given
in Section 2) are available, as it actually increases the
amount of independent equations one may exploit [14].

The minimization of 7 under the constraints of Eq. (6)
can be cast as the global minimization of the cost func-
tional

L
L&D = 2 |17 - B+ K, (&I,
=1
+ Bill; = EE} = €Gonoa( )7}, (11)

where B, are appropriate weighting coefficients, taken
here as g;'=IE!?, with I-I} being the unweighted L2
norm over D. The gradients of the cost functional, which
are derived according to the general strategy outlined in
[22], are given by

VeL=- zlELl BILE;} + GiaogTD] 1, = €E} = EGroa(J))],
_ (12)
VL = 4aK[(E)+ KJ) I - |Ej + KJ | Pw)]
+ 281 - £Gioq] T, — B} — EGinoa())], (13)

where 1 stands for the transpose conjugate operation,
* for the conjugate operation.

A standard gradient-based minimization scheme can
now be employed to obtain an estimation of the dielectric
properties of the scatterer. Of course, additional a priori
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information (e.g., positiveness, lossless nature of the tar-
gets, etc.) can also be considered during the iterative
process.

C. Choice of Starting Guess

An important point in the minimization of Eq. (11) is the
choice of the starting guess, i.e., the initial distribution of
the auxiliary function and of the contrast source inside
the scattering domain. Different answers can be found in
the literature.

A very popular choice is the background solution, which
consists of choosing an initial contrast function in D
slightly different from zero. Then the corresponding aux-
iliary function ¢ is determined according to Eq. (5), while
the contrast source is evaluated by solving Eq. (4). Of
course such a choice, by neglecting the presence of the tar-
get in the initial step, does not contain any a priori infor-
mation.

A second possible choice, more useful and widely used
in the framework of the source-type integral-equation-
based inversion methods, is the backpropagation solution
[18]. In its original formulation, the initial contrast source
is first retrieved from the scattered field, which is as-
sumed to be known in both amplitude and phase. Then
the contrast function, and thus the auxiliary function in
the framework of the CS-EB inversion method, are deter-
mined by solving Eq. (4) in terms of the contrast function,
using the contrast source distribution previously deter-
mined.

Of course, this kind of strategy cannot be applied in the
present framework because of the lack of information on
the phase distribution. Therefore, a modified version of
the above backpropagation solution has been derived. The
key idea is to assume an initial distribution of the con-
trast source in D given by the incident field (which is
known or estimated [17]) times a constant given, for in-
stance, by the average value of the auxiliary function in D
(or of the contrast function in the framework of the CS in-
version method [18]). Then, to derive a suitable distribu-
tion of the initial auxiliary function and thus of the con-
trast function, Eq. (4) is solved in terms of the auxiliary
function, according to the original strategy. The achieved
result is denoted in the following as the modified back-
propagation solution.

In particular, once the contrast source distribution has
been initialized as follows:

Jo(r) = yEi(r), (14)

wherein vy is a real constant to determine according to the
availability of some information on the nature of the tar-
gets (lossless nature, approximate mean value of the per-
mittivity distribution, etc.), then the initial distribution of
the auxiliary function is obtained by minimizing the cost
functional

&(r) = minllJ, o ~ E = £Gyoa(10) (15)
p
where {a, ;;1 are the auxiliary function coefficients as de-

fined in Eq. (7). As shown in the following, this simple
modification of the original backpropagation solution al-
lows to improve the final reconstructions. Note that, in
that case, no a priori information on the nature of the tar-
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get has been considered, except for an approximate
knowledge of the contrast average over D. Of course, if
more information on the objects are available, such as
their lossless nature or some positivity constraints on the
real part of the permittivity distribution, one can improve
the quality of the starting guess and therefore the final
results.

4. FEATURES AND LIMITATIONS OF THE
TWO-STEP APPROACH: A BRIEF
OVERVIEW

As recalled in the introduction, the problem of recon-
structing the unknown contrast from amplitude-only
measurements of the total field has been previously ap-
proached from a different perspective. The devised
method, conceptually alternative to direct ones, such as
the one presented in Section 3, envisages a solution pro-
cedure that splits the phaseless imaging problem into two
steps.

In the first step, a preliminary estimation of the ampli-
tude and phase patterns of the scattered fields (i.e., the
usual input of an inverse scattering approach) is per-
formed solving a quadratic nonlinear inverse problem
[7,13,17]. In particular, the overall complex scattered field
pattern is represented by means of P Fourier harmonic
coefficients, f={f1,...,fp}, where, according to the proper-
ties recalled in Section 2, P=(2kRp)2. Then, the following
quantity has to be minimized:

L

Fl) =2 |17 - |Eif - |Ef]* - 2Re(EIET )y, (16)
=1

For this class of inverse problems, it is known that the oc-
currence of false solutions can be avoided, provided that
the ratio among the number of independent data (here
the samples of I°*) and the number of real unknowns
(here given by the real and imaginary parts of f) is larger
than 3 [14]. In directing the reader to [7] for a more de-
tailed discussion, it is worth recalling here that the inter-
ference term in the available data between the incident
and scattered fields can be conveniently exploited in this
framework to fulfill the above-mentioned condition and
thereby achieve a robust estimate of the (complex) scat-
tered field pattern.

In particular, it turns out that, given the size of the
minimum circle Rp that encloses the targets, a proper set-
ting of the measurement setup parameters (i.e., the ra-
dius Ry of the circumference in which the probes are lo-
cated) is sufficient to match the desired ratio. For the
geometry at hand (see Fig. 1), the field properties and rep-
resentations recalled in Section 2 simply leads to Ry
>R,=(-1+ V@)RD, which thus rules the proper choice of
Ry [7]. Of course, when this condition cannot be realized
(for instance, due to some physical constraints on the
setup dimensions) the solution of the quadratic inverse
problem may result in an unreliable estimate of the pat-
tern sought [7,17]. It is worth noting that similar rules
can be derived also in the case of aspect-limited data [13]
by properly taking into account the different geometry.

The second part of the two-step approach consists in a
traditional inverse scattering problem and can therefore
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be pursued by taking advantage of any of the many meth-
ods developed in the literature so far. For the sake of com-
parison, we will consider the same CS-EB scattering
model as in Section 3. By denoting with E{* the estimated
scattered field (amplitude and phase), the cost functional
to be minimized is now given by [20]

L

L&) = >, (K, - B + Bl — EEL ~ £Goa( )31,
=1

(17)

where, different from the one-step approach and accord-
ing to its usual definition [18,20], a;"'=[|ES*Z and B is
the same as in Eq. (11).

By comparing the first term of Eq. (17) to the corre-
sponding one in the single-step cost functional of Eq. (11),
one can immediately note that the two-step approach is
characterized by a lower degree of nonlinearity [19] with
respect to the parameters embedding the unknowns of
the inverse problem. In particular, while the first term in
Eq. (17) depends on the unknown contrast source ¢/; in a
linear way, the corresponding term in Eq. (11) is related to
its square amplitude, thus passing from a linear depen-
dence to a nonlinear one. Because of the local nature of
the adopted optimization method, such a circumstance
has a key role in obtaining accurate reconstructions of the
unknown permittivity maps [22]. In particular, the single-
step approach results turns out to be more sensitive to the
starting guess. Accordingly, when the conditions on the

L8]
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Receiver number
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1 18 36
(a) Transmitter number
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© 1 18 36
Transmitter number

D’Urso et al.

measurement setup make it applicable, the two-step pha-
seless imaging method has to be preferred.

5. EXPERIMENTAL RESULTS

The performances of the two phaseless imaging ap-
proaches described in Section 3 and Section 4 have been
tested using the experimental data provided by the Insti-
tute Fresnel of Marseille [23—25]. In these experiments,
measurements are collected under an aspect-limited con-
figuration in which, for each position of the primary
source ¥;€[0°,360°], measurements are gathered over
an open arc 9, € [9;+60°,9;+300°]. For all the examples
considered, the working frequency is 4 GHz. The domain
under test is taken as a square region of 2.8 \ side, \ be-
ing the wavelength in free space, subdivided into 46
X 46 pixels for the first two examples and 80X 80 in the
last one, according to the metallic nature of the target.

As the overall number of scattering experiments (L,
number of sources and M, number of receivers) is depen-
dent on the experiments considered, they will be given for
each case. The iterative procedure is stopped when the
difference between the previous value of the cost func-
tional adopted and the actual one is less than 1.0 1074,
Moreover, note that when the modified backpropagation
solution is used as a suitable starting guess, the param-
eter yin Eq. (14) has been fixed to 1.0 in all the numerical
experiments.

As the database provides measurements of amplitude
and phase of the total and incident fields, we can conve-

Receiver number
o S W N [
(= _ (=] o k=]

o
o

70

(®

Receiver number

@ 1 18
Transmitter number

Fig. 2. (Color online) TwinDielTM dataset: Intensity and phase patterns of (a), (b) the measured scattered fields and (c), d) those re-

constructed by solving Eq. (16) of the two-step procedure in Section 4.
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niently exploit the measured phase of the total field to
check the accuracy of both phaseless imaging approaches
that we present.

A. TWINDIELTM Dataset

As first example, we have considered the TWINDIELTM
dataset [23] consisting of two dielectric homogeneous cyl-
inders of radius 1.5 cm and permittivity 3+0.3, approxi-
mately positioned at (-4.5,0) cm and (4.5,0) cm, respec-
tively. This dataset is known in the literature as a
benchmark for nonlinear inverse scattering methods, as
linearized approaches are understood to fail when applied
to it. In this experiment, L=36 source positions and M
=72 receiver positions have been considered.

Let us start to apply the two-step procedure of Section
4. In particular, by using the knowledge of the incident
field and of the measured square amplitude distribution
of the total field on the 240° arc, the Fourier harmonic co-
efficients of the scattered field are evaluated by minimiz-
ing Eq. (16). The number of coefficients (here P=11Xx11)
is chosen according to the electrical dimension of the do-
main investigated and a random distribution has been
used as a starting guess in the quadratic minimization
procedure.

By comparing the actual scattered field (see Figs. 2(a)
and 2(b)) and the retrieved one (see Figs. 2(c) and 2(d), it
can be observed that a good reconstruction is achieved,
both in amplitude and in phase, although a slightly worse
reconstruction is obtained at the end of the observation
arc as a result of the truncation of the measurement do-
main. It is also interesting to note that since the radius of
the circle in which the receivers are located is Ry
=1.765 m and R,.=0.2113 m, the condition R} >R,, holds,
thus preventing occurrence of local minima [7].

The second and final part of the two-step procedure
deals with a standard inverse scattering problem, ad-
dressed here using the CS-EB method. The background
solution has been used as a starting guess in the minimi-
zation of Eq. (17). After representing the unknown auxil-
iary function ¢ and then the contrast function y in terms
of P=11X11 Fourier harmonics in the minimization pro-
cedure, the very accurate reconstruction of the real part of
the contrast is achieved and shown in Fig. 3. Note that no
a priori information has been used at all. The correspond-
ing imaginary part, in agreement with the lossless nature
of the targets, is negligible with respect to the real one
(0.10 is the maximum value of the estimated imaginary
part). The maximum value of the estimated contrast func-
tion is 2.1, which is within the measurement accuracy.
The computation takes just a few minutes on a standard
desktop PC.

It is worth noting that a comparable reconstruction is
actually obtained when using the measured (amplitude
and phase) scattered fields directly in Eq. (17), thus con-
firming the possibility of performing a faithful phaseless
quantitative imaging with no loss of accuracy.

Let us now compare the above result with that ob-
tained by the one-step approach of Section 3, where the
intensity data are directly incorporated into the minimi-
zation process. The auxiliary function £ and the contrast
function are still represented in terms of 11 X 11 Fourier
harmonics. The background solution is first used as a
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starting guess and the results obtained are represented in
Fig. 4. Due to the higher degree of nonlinearity of the one-
step inversion problem, the minimization procedure is
more sensitive to the starting guess and gets stuck in a
local minimum. Indeed, even though the shape of the two
targets is clearly defined, their permittivity value is much
lower than the actual one.

In order to improve the results, the modified back-
propagation solution is now used as a starting guess. As
shown in Fig. 5, the use of this different initialization
leads to an improved reconstruction for the real part of
the contrast. Again, the corresponding imaginary part is
negligible with respect to the real one, being 0.12 its
maximum estimated value.

B. FOAMDIELEXTTM Dataset

As a second example, we have considered the
FoAMDIELEXTTM dataset [24,25], which corresponds to
an inhomogeneous target embedded in free space. The
target consists of two purely dielectric cylinders tangent
to each other. The larger one is centered and presents a
relative permittivity of 1.45+0.1 and a radius of 0.04 m,;
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Fig. 3. (Color online) Real part of the reconstructed contrast
function for the TWINDIELTM dataset when using Eq. (17) of the
two-step procedure in Section 4. The maximum value of the esti-
mated contrast function is 2.10.
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Fig. 4. (Color online) Real part of the reconstructed contrast
function for the TWINDIELTM dataset with the one-step approach
of Section 3. The background solution has been used as starting
guess. The maximum value of the estimated contrast function is
0.67.
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Fig. 5. (Color online) Real part of the reconstructed contrast
function for the TWINDIELTM dataset obtained with the one-step
procedure of Section 3. The modified backpropagation solution
has been used as starting guess in the inversion procedure. The
maximum value of the estimated contrast function is 1.85.

the smaller has a relative permittivity of 3+0.3 and a ra-
dius of 0.015 m. In this case, L=8 source positions and
M =241 receiver positions are considered. Due to the very
limited number of source positions available in this ex-
ample, the intensities of all the involved fields are not
properly sampled (see Section 2). Therefore, worse results
are expected with respect to the previous example, both in
terms of reconstruction of the scattered field and of the
permittivity profile.

Let us consider first the two-step procedure. After mod-
eling the unknown complex scattered field as a superpo-
sition of P=11X 11 Fourier harmonics, we have solved the
problem of Eq. (16). Then the unknown auxiliary function
and the contrast function have been represented in terms
of P=11X 11 Fourier harmonics and the cost functional in
Eq. (17) has been minimized starting from the back-
ground solution as a suitable starting guess. The real part
of the reconstructed contrast is shown in Fig. 6, while the
imaginary one, according to the lossless nature of the tar-
gets, is again negligible.

10
5.
-10

-10 -5 0 (cm] 5 10

wn

[cm]
o

2

1.
1.
1.
1.
1

0.
0.
0.
0.

Fig. 6. (Color online) Real part of the reconstructed contrast
function for the FOAMDIELEXTTM dataset obtained when follow-
ing the two-step approach of Section 4. The background solution
has been used as starting guess. The maximum value of the es-
timated contrast function is 1.34.
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It is interesting to note that, as expected, the quality of
the reconstruction is worse than in the previous example,
even though the presence of two targets is clearly re-
trieved together with their size and shape. In particular,
the reduced number of independent data at our disposal
for the inversion of the quadratic operator in the first step
(we went from the 36 sources of the first example to 8 for
this one) makes it more difficult to extract the scattered
field from the intensity-only data of the total field, thus
negatively affecting the accuracy of the final reconstruc-
tion of the contrast function in the second step.

Let us now consider the one-step procedure. The un-
known auxiliary function and the contrast function are
represented in terms of P=11X11 Fourier harmonics. By
using the modified backpropagation solution as starting
guess, the real part of the contrast function reported in
Fig. 7 is achieved, whose corresponding imaginary part is
negligible (0.07 is now its maximum value).

As can be seen, by using an accurate starting guess, the
final quality of the reconstruction is accurate, both in
terms of size of the targets and their shapes, even if the
contrast values are slightly underestimated with respect
to the actual ones, in agreement with the reduction of in-
dependent information. It is also interesting to note that
the achieved results are better than the ones obtained by
using the two-step approach of Section 4, thus confirming
the expected complementarity and capabilities of the in-
verse profiling approaches we discuss. In particular, this
example shows that when the conditions for applying the
two-step procedure do not hold, the one-step approach is a
valuable alternative.

C. FOAMMETEXTTM Dataset

To show the capability of the one-step procedure in suc-
cessfully retrieving the imaginary part of the unknown
contrast that is present in the case of lossy or metallic tar-
gets, we have considered the FOAMMETEXTTM dataset
[24,25], which is related to an inhomogeneous target
made of two circular cylinders. The smaller one, located
outside the dielectric one, is metallic, while the dielectric
cylinder is characterized by a relative permittivity of
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Fig. 7. (Color online) Real part of the reconstructed contrast
function for the FOAMDIELEXTTM dataset by using the one-step
approach of Section 3. The modified backpropagation solution
has been used as starting guess. The maximum value of the es-
timated contrast function is 1.75.
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Fig. 8. (Color online) Real part of the reconstructed contrast
function for the FOAMMETEXTTM dataset by using the one-step
approach of Section 3. The modified backpropagation solution
has been used as starting guess.
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Fig. 9. (Color online) Imaginary part of the reconstructed con-
trast function for the FOAMMETEXTTM dataset by using the one-
step approach of Section 3. The modified backpropagation solu-
tion has been used as starting guess.

1.45+0.1 and a radius of 0.04 m. The radius of the metal-
lic cylinder is 0.015 m. In this case, L=18 and M =241.

By still considering P=11X 11 unknown Fourier har-
monics for the auxiliary function and the contrast func-
tion and by using the modified backpropagation solution
as starting guess, the results reported in Figs. 8 and 9
have been achieved. As can be seen, the metallic nature of
the smaller cylinder has been clearly estimated as well as
its size and shape. We can thus conclude that the proce-
dure can indeed reconstruct the imaginary part of the
contrast function. It is also worth noting that the charac-
teristics of the dielectric cylinder have been estimated as
well, even though the strong reflection from the metallic
target does not allow us to achieve an accurate estimation
of its shape and size.

Note that the capability to image lossy or metallic tar-
gets by means of the two-step approach has been already
investigated and proved under proper conditions in [7,13].

6. CONCLUSION

In this paper two different strategies for the characteriza-
tion of two-dimensional targets using phaseless measure-
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ments of the total fields have been compared by using ex-
perimental data measured at the Institute Fresnel of
Marseille from homogeneous and inhomogeneous targets,
with a combination of purely dielectric and metallic ma-
terials.

In the first inversion method, the intensity-only mea-
sures of the total field have been directly incorporated in
the minimization scheme, while the accuracy and the
quality of the final results have been improved by means
of a proper definition of the starting guess and a suitable
weighting of the cost functional considered.

In the second scheme, originally proposed in [7], one ex-
ploits the properties of the scattered fields and the theo-
retical results of the inversion of quadratic operators to
derive a two-step solution strategy in which the (complex)
scattered fields embedded in the available data are re-
trieved first, and then a traditional inverse scattering
problem is solved.

In both cases, the analytical properties and representa-
tions of the involved fields allow one to properly fix the
measurement setup and to identify the more convenient
solution strategy. In particular, as discussed by means of
theoretical considerations and supported by experiments,
the two-step strategy achieves better results as compared
with the one-step approach because of its better control of
the overall nonlinearity of the inverse problem. On the
other hand, when the measurement setup does not pro-
vide enough independent data to accurately pursue the
field retrieval, the one-step approach has to be preferred.

It is interesting to note that, while the Marseille data
are usually elaborated by using multifrequency (i.e.,
broadband) data, the accurate results achieved herein
with both approaches rely only on monochromatic data.
Of course, use of multifrequency information can further
improve the final results in terms of size, shape estima-
tion, and permittivity value.

As further comment, note that, in order to have a com-
pletely phaseless imaging method, knowledge of the inci-
dent field, both in amplitude and in phase, can also be
avoided. In particular an additional step would be re-
quired in order to estimate the phase of the incident field
on the measurement domain before using one of the im-
aging procedures discussed in this paper. For more de-
tails, the reader is directed to [17].

As future work, note that the development of new and
effective inversion approaches starting only from inten-
sity data of the scattered field instead of the total field can
be pursued. This situation is of interest in optical appli-
cations where the capability of imaging dielectric and me-
tallic targets and developing inversion strategies based on
phaseless measurements can open the way to very inter-
esting applications. On the other side, such a problem
sets new and challenging difficulties. As a matter of fact,
the amount of independent data that can be exploited is
considerably reduced both because one cannot exploit in-
terference among the incident and the scattered fields
(see Section 4), and because the actual measurement set-
ups produce aspect-limited data [3,4]. As a consequence,
in order to compensate for the lack of information, both a
multifrequency approach to the problem and/or the devel-
opment of innovative measurement configurations (as
well as new inversion procedures) are needed.
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APPENDIX A

The aim of this Appendix is to briefly derive the CS-EB
scattering equation [20] adopted in the optimization prob-
lems considered in this paper. The starting point is the
traditional contrast Source integral equation (3). By add-
ing and subtracting the contrast source function J(r) in
the integral term in this latter, one gets

J(r) - x(r)E'(r) =x(r)f f G(r,x")[J(x") - J(r)]dr’
D

+X(r)J(r)Jf G(r,xr")dr’. (A1)
D

Then, by grouping with respect to J(r), one achieves

J(r) - x(x)J (x)fp(r) = X(X)E'(r) + x(r) f j G(r,r')
D

X[J(r") = J(r)]dr’, (A2)

where

fp(r)=ff G(r,r')dr’. (A3)
D

Now, by introducing

X(r)

e

Gmod(J)sz G(r,x)[J(x") - J(r)]dr’
D

= f J G(r,r")J(xr")dr' —J(r)fp(r), (A4)
D

and replacing them into Eq. (A2), the CS-EB scattering
Eq. (4) is achieved [20].

Some comments are now in order. First, note that the
CS-EB equation has been derived without any approxima-
tion from the CS one, thus being completely equivalent to
it. Moreover, since the two equations have the same struc-
ture, one can exploit all numerical algorithms and tools
already developed for the CS equation for the solution of
the CS-EB one. On the other hand, a new radiation op-
erator and a different auxiliary function—see Eq. (4)—are
involved in the CS-EB equation. Therefore, as detailed in
[20], Eq. (3) and Eq. (4) have the same information con-
tent, but the CS-EB equation exhibits a different, actually
lower, degree of nonlinearity [19] of the relationship
among parameters embedding dielectric characteristics
and the scattered fields. As such, it defines a new and con-
venient model for solving forward and inverse scattering
problems [20].
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