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and challenges

Michele D’Urso,1,* Kamal Belkebir,2 Lorenzo Crocco,3 Tommaso Isernia,4 and Amélie Litman2

1DIET—Dipartimento di Ingegneria Elettronica e delle Telecomunicazioni, Università degli Studi
di Napoli Federico II, Via Claudio 21, I-80125 Naples, Italy

2Institut Fresnel, UMR-CNRS 6133, Campus de Saint Jérôme, case 162, Université de Provence,
F-13397 Marseille Cedex, France

3IREA-CNR, Istituto per il Rilevamento Elettromagnetico dell’Ambiente—Consiglio Nazionale delle Ricerche,
via Diocleziano 328, I-80124 Naples, Italy

4DIMET—Università Mediterranea of Reggio Calabria, Loc. Feo di Vito, I-89060 Reggio Calabria, Italy
*Corresponding author: micdurso@unina.it

Received July 27, 2007; accepted October 23, 2007;
posted November 16, 2007 (Doc. ID 85792); published December 21, 2007

Two-dimensional target characterization using inverse profiling approaches with total-field phaseless data is
discussed. Two different inversion schemes are compared. In the first one, the intensity-only data are exploited
in a minimization scheme, thanks to a proper definition of the cost functional. Specific normalization and start-
ing guess are introduced to avoid the need for global optimization methods. In the second scheme [J. Opt. Soc.
Am. A 21, 622 (2004)], one exploits the field properties and the theoretical results on the inversion of quadratic
operators to derive a two-step solution strategy, wherein the (complex) scattered fields embedded in the avail-
able data are retrieved first and then a traditional inverse scattering problem is solved. In both cases, the
analytical properties of the fields allow one to properly fix the measurement setup and identify the more con-
venient strategy to adopt. Also, indications on the number and types of sources and receivers to be used are
given. Results from experimental data show the efficiency of these approaches and the tools introduced.
© 2007 Optical Society of America
OCIS codes: 290.3200, 110.6960.
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. INTRODUCTION
n inverse scattering problems, one looks for a quantita-
ively accurate description of the electrical and geometri-
al properties of a region under test given a set of incident
elds and measures (both in amplitude and phase) of the
orresponding scattered fields on a generic surface lying
utside the region under test [1]. Due to their wide range
f potential applications, the development of accurate and
eliable techniques for solving this kind of problem is to-
ay still an important challenge [2–4].
Leaving aside peculiar characteristics of the different

pproaches proposed in the literature, one of the common
rawbacks is the need to measure both amplitude and
hase of the scattered fields. As a matter of fact, in sev-
ral areas of applied science, the phase distribution of the
cattered fields is often too corrupted by noise to be use-
ul, or there is no phase measurement at all, e.g., optical
easurement setups. Even if there is some effort nowa-

ays to provide experimental setups capable of measuring
ll the components of the scattered fields [5,6], it is of
reat importance to develop approaches that image
amples from only amplitude data, as these latter would
pen the way to more simple and cost effective experimen-
al setups. In addition, it is also important to remark
hat, in most applications, the actual quantity measured
s the total field. In fact, unless the incident field is pro-
ided by a directive antenna, the measured field contains
oth the incident and the scattered field, so that the total
1084-7529/08/010271-11/$15.00 © 2
eld has to be processed instead of the scattered field as
ould be done with the usual methods.
To overcome the above limitations, several approaches

or solving inverse scattering problems from intensity-
nly data have been proposed in the literature [7–13].
mong them, an approach based on only amplitude mea-
urements of the total fields has been recently proposed,
rst with reference to the case of measures taken on a
losed curve surrounding the domain under test [7] and
hen to that of transmitters and receivers placed over two
runcated lines somehow enclosing the investigating do-
ain [13]. In both cases, the proposed procedure splits

he imaging problem into two different steps. In the first
tep, the scattered field is estimated from the measure of
he square amplitude distribution of the total field, while
he second step is aimed at estimating the unknown di-
lectric properties from the estimated scattered fields
modulus and phase). In summary, the first step allows us
o estimate the input data for the second one, which is a
raditional inverse scattering problem.

As recalled throughout this paper and in previous con-
ributions [7,13], the separation of the problem into two
ifferent steps allows a better control of the overall non-
inearity of the inverse problem compared with single-
tep procedures. In fact, the exploitation of theoretical re-
ults on the inversion of quadratic operators [14] and field
roperties representations [15,16], leading to design con-
traints on the measurement setup, allows one to success-
008 Optical Society of America
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ully solve the first step, while all the available knowledge
bout traditional inverse scattering problems is exploited
n the second one. More recently, such an imaging tech-
ique has been extended to a three-step procedure, in
hich a phase-retrieval (PR) problem is preliminarily

olved to estimate the phase of the incident field from its
easured amplitude [17]. By doing so, the resulting im-

ging strategy relies solely on amplitude-only data.
However, the above mentioned inversion approaches

7,13,17] can be actually applied provided that some con-
itions on the measurement setup are satisfied. As a mat-
er of fact, when these conditions do not hold true, the es-
imation of the scattered field from the measured total
eld amplitude is not reliable. In these cases, it is there-

ore of interest to develop new, accurate, and effective in-
erse profiling approaches based on amplitude-only infor-
ation of the total field, once the incident field is known

r estimated in the scattering domain and on the mea-
urement curve. In such approaches, the aim is to solve
he imaging problem in a single step, without previously
stimating the scattered field embedded in the measure-
ents. This would require reformulation of the inverse

cattering problem to take into account that the available
ata are intensity-only. On the other hand, at least in
rinciple, particular constraints on the measurement
etup are not required. Therefore, these approaches are
xpected to be useful in all those cases where the two-step
trategy [7,13] or its generalization [17] cannot be used.

The aim of this paper is therefore to introduce a novel
ne-step imaging strategy based on amplitude-only total
eld data and to compare and discuss, by using experi-
ental data, its performance with that of the two-step

trategy.
It is worth noting that the idea of directly incorporating

he square amplitude distributions of the total field in the
nversion scheme is not new in the literature [10–12].

ith respect to these contributions, the approaches pro-
osed and discussed in this paper have interesting and
omplementary characteristics. First, unlike [10], we do
ot make use of a priori information in the inversion pro-
ess; rather, we take advantage of a suitable starting
uess achieved by means of a simple modification of the
idely used backpropagation solution [18]. Moreover, un-

ike [12], the minimization scheme herein adopted ex-
loits a local optimization procedure based on an efficient
onjugate gradient-fast Fourier transform (CG-FFT)
cheme and thus avoids the use of time-consuming global
ptimization algorithms.

In this respect, it is also worth noting that the use of a
roper weighting of the cost functional to minimize on the
asis of the properties of the intensity-only data pattern
s well as the available knowledge in phase retrieval pro-
edures [14] allows us to improve the data fitting and, of
ourse, the final reconstruction in terms of the permittiv-
ty and conductivity of the unknown targets. Last but not
east, let us remark that our approaches are based on the
ontrast source-extended Born (CS-EB) inversion scheme,
hich allows us to reduce the degree of nonlinearity [19]
f the inverse scattering problem and which achieves im-
roved permittivity and conductivity map reconstructions
n many cases [20].

The paper is organized as follows. In Section 2, the
 r
dopted geometry configuration is presented and the
athematical model is given. The sampling properties

nd representations of the involved electromagnetic fields
re also recalled. In Section 3, the single-step inversion
cheme is thoroughly described, together with the weight-
ng strategy and the adopted modified backpropagation as
nitial solution. The features and limitations of the two-
tep approach are briefly sketched in Section 4. Section 5
s devoted to assessing and comparing the performances
f the two approaches by means of experimental data con-
erning metallic and dielectric inhomogeneous targets
ollected at the Institute Fresnel of Marseille. Conclu-
ions follow.

. MATHEMATICAL MODEL AND FIELD
ROPERTIES
he geometry of the problem studied in this paper is
hown in Fig. 1, where one or more two-dimensional ob-
ects of arbitrary cross section � are confined in a
ounded domain D. The embedding medium �b is as-
umed to be infinite and homogeneous with permittivity
b=�0�br and permeability �=�0 (�0 and �0 being the per-
ittivity and permeability of the vacuum, respectively).
he scatterers are assumed to be inhomogeneous cylin-
ers with a permittivity distribution ��r�=�0�r�r�; the en-
ire configuration is nonmagnetic ��=�0�. A right-handed
artesian coordinate frame �O ,ux ,uy ,uz� is defined. The
rigin O can be either inside or outside the scatterer, and
he z axis is parallel to the invariance axis of the scat-
erer. The position vector OM can then be written as
M=r+zuz. The line sources that generate the electro-
agnetic excitation (denoted as Tx in Fig. 1) and the el-

mentary probes collecting the data (Rx in Fig. 1) are lo-
ated at �rl�1�l�L on a circle � of radius R�. Taking into
ccount a time factor exp�i�t�, in the transverse magnetic
TM) case, the time-harmonic incident electric field cre-
ted by the lth sources is

ig. 1. (Color online) Geometry of the problem. A two-
imensional target with cross section �. � (with radius b) is the
ircle where the sources �Tx� and probes �Rx� are located. a is the

adius of the minimum circle enclosing the unknown targets.
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Ei
l�r� = El

i�r�uz = A
��0

4
H0

�2��kb�r − rl��uz, �1�

here A is the strength of the electric source, � the angu-
ar frequency, H0

�2� the Hankel function of zeroth order
nd second kind, and kb the wavenumber in the sur-
ounding medium.

Under these hypotheses and omitting the exp�i�t�
ime-dependence term, the scattering equations describ-
ng the total field for each illumination condition can be
ormulated as two coupled contrast-source integral rela-
ions [18], the observation or data equation Eq. (2) and
he coupling or state equation Eq. (3):

El�r � �� = El
i�r � �� + El

s�r � ��

= El
i�r � �� +� �

D

G�r,r��Jl�r��dr�, �2�

Jl�r � D� = ��r � D�El
i�r � D� + ��r � D�

�� �
D

G�r,r��Jl�r��dr�, �3�

here ��r�=�r�r�−�br denotes the permittivity contrast,
hich vanishes outside D; G�r ,r�� is the two-dimensional

ree-space Green function and J�r�=��r�E�r� corresponds
o the contrast source.

The overall aim of the imaging problem we want to
olve is to determine the two-dimensional contrast func-
ion ��r� in D starting from the knowledge of the incident
elds El

i�r��� on the probing curve � and from an incom-
lete (because only a finite number of measurements can
e performed) and inaccurate (because the measurements
re affected by error) knowledge of the intensity of the to-
al fields �El�r����2, l� �1, . . . ,L�.

Because �E�2= �Ei�2+ �Es�2+2Re�EsEi*�, it proves fruitful
o briefly recall properties and possible representations of
oth scattered and incident fields and then of �Ei�2, �Es�2

nd of the interference term Re�EsEi*�. As discussed in
he following, these properties will allow us to quantify
he amount of independent data at our disposal for solv-
ng the imaging problem at hand, to sample the intensity
ata in an accurate and nonredundant fashion, and to de-
ermine the maximum amount of information about the
argets one can extract from the available data. Moreover,
s in [7,13,17], exploitation of these properties provides
he guidelines for design of an effective measurement
etup.

With reference to the geometry depicted in Fig. 1, it is
nown that the scattered field corresponding to a given
ource can be accurately represented with a finite number
f Fourier harmonics given by 2kbRD, RD being the radius
f the minimum circle enclosing the targets [16]. As a
ourier series can be turned into a Dirichlet sampling se-
ies, 2kbRD samples uniformly spaced in angle accurately
epresent each scattered field as well. From reciprocity
16], the number of nonsuperdirective independent inci-
ent fields impinging on the domain under test is 2kbRD
s well. Hence, by excluding superdirective sources,
k R plane waves uniformly spaced in angle form a com-
b D
lete family of independent incident fields. Therefore, as a
unction of the incident angle 	l and of the receiving angle
r, the scattered field can be accurately represented by a
umber of samples given by �2kbRD�� �2kbRD�= �2kbRD�2,
here, as discussed in [7], only half of these samples is
ctually independent.
As far as the incident fields measured on � are con-

erned, a different result holds true. In fact, by parallel-
ng the above reasoning to the representation of the inci-
ent field in D, one can prove that each incident field on �
an be accurately represented by 2kbR� Dirichlet
amples, and that 2kbR� (nonsuperdirective) independent
ncident fields (constituted by plane waves uniformly
paced in angle) exist therein. Therefore, as discussed for
he scattered field, the incident field on � as a function of
oth angles 	l and 	r can be accurately represented by a
umber of samples given by �2kbR��� �2kbR��= �2kbR��2.
ote that also in this case only half of these samples is
ctually independent [7].
When considering the square amplitude patterns of the

bove fields, the number of samples required for a faithful
epresentation becomes four times larger (with respect to
mplitude and phase measurements) as the sampling
tep has to be halved along each of the two coordinates.
herefore, �Es�r����2 requires �4kbRD�� �4kbRD�
�4kbRD�2 samples and �Ei�r����2 requires �4kbR��
�4kbR��= �4kbR��2 samples.
To accurately represent �E�2 on �, being �E�2= �Ei�2

�Es�2+2Re�EsEi*�, one needs a number of samples equal
o the maximum between �4kbR��2 and �2kb�RD+R���2,
he latter being the number of samples required to repre-
ent the term 2Re�EsEi*� on � [13]. Of course, only half of
hese samples is independent [7].

. SINGLE-STEP APPROACH FOR
NTENSITY-ONLY INVERSE PROFILING
raditionally, in standard inverse scattering problems,
ne assumes the knowledge of the total fields in both am-
litude and phase. Here, the problem we want to solve
onsists of retrieving the dielectric characteristics within
region under test from measurements of the square am-
litude distribution of the total field, once the incident
eld is known or estimated as in [17]. The approach de-
cribed in this section corresponds to a single-step proce-
ure based on the minimization of a discrepancy criterion
etween the amplitudes of the simulated and measured
otal fields. This minimization problem is recast into a
S-EB formalism as in [20]. A brief recall of the deriva-

ion and main features of the CS-EB scattering model is
eported in Appendix A.

. Representation of Unknowns
n the CS-EB inversion method [18], both the contrast �
nd the induced current J=�E inside the targets are as-
umed as unknowns. In order to lower the degree of non-
inearity [19] and therefore the difficulty of the inverse
roblem with respect to parameters embedding dielectric
haracteristics, the traditional scattering equation Eq. (3)
s replaced by a new coupling equation, the CS-EB equa-
ion [20], given by
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Jl�r� − 
�r�El
i�r� = 
�r� � �

D

G�r,r���Jl�r�� − Jl�r��dr�

= 
�r�Gmod�Jl�, �4�

here


�r� =
��r�

1 − ��r�fD�r�
, fD�r� =� �

D

G�r,r��dr�,

Gmod�Jl� =� �
D

G�r,r���Jl�r�� − Jl�r��dr�

=� �
D

G�r,r��Jl�r��dr� − Jl�r�fD�r�. �5�

or the sake of simplicity, equations Eq. (2) and Eq. (4)
ay be rewritten using symbolic notations as

El
s = KJl; Jl = 
El

i + 
Gmod�Jl�, �6�

here Gmod�Jl� is the new scattering operator relating the
nduced current inside the scattering domain to the scat-
ered field outside. It is worth noting that, despite that
he CS-EB model defined in Eq. (4) is just a simple rewrit-
ng of the traditional contrast source model, it has proved
o be a more effective tool to formulate and solve both for-
ard and inverse scattering problems [20]. Further, while

ts derivation was inspired by some mathematical and
hysical considerations related to presence of losses in the
ost medium and/or in the targets [20], processing of ex-
erimental data (both amplitude and phase) has shown
hat accurate and reliable results can also be achieved for
ossless inhomogeneous targets in free space [21].

The ill-posedness of the inverse scattering problem is
lso dealt with by looking for finite-dimensional represen-
ations of both the unknowns [22]. We thus consider


�r� = �
p=1

P

ap�p�r�, �7�

Jl�r� = �
q=1

Q

cq
l �q�r� ∀ l = 1, . . . ,L, �8�

here ��p	p=1
P and ��q	q=1

Q are two orthonormal basis func-
ions taken here as spatial Fourier harmonics owing to
he lack of a priori information on the unknown scatter-
rs. Of course, according to the above results on the field
roperties, the number of the unknown coefficients �ap	p=1

P

nd �cq	q=1
Q has to be lower than the number of indepen-

ent data one has at one’s disposal for the inversion as
iscussed in Section 2; see also [22]. In particular, note
hat, as far as the choice of P is concerned, the properties
f the scattered fields recalled in Section 2 allow one to
tate that, for any given RD, one can determine the maxi-
um amount of information that can be extracted in the

nverse scattering step, thus allowing one to fix the maxi-
um number of unknown coefficients for the contrast

unction in Eq. (7) that can be reliably retrieved.
. Discrepancy Criterion
he discrepancy criterion between the measured fields
nd the simulated ones considered in the following is
iven by

J�
� = �
l=1

L


l
Il
obs − �El

i + KJl�
��2
W�

2 , �9�

here Iobs represents the available intensity measure-
ents of the total field, 
l is a weighting coefficient set in

uch a way that the total field intensities corresponding to
he different scattering experiments have an equal
eight, and W� denotes a weighted L2 norm on �. In par-

icular, 
l
−1= 
Il

obs
W�

2 , and a weighted L2 norm—rather
han the more usual unweighted one—is used because the
dopted cost functional Eq. (9) embeds the solution of a
hase retrieval problem for the total field.
In these problems, the zeros (or nearly zeros) of the

ata pattern (in our case Il
obs for each illumination) play a

ey role in the faithful estimation of the unknown [14],
nd suggest that a different weight can be usefully ex-
loited here. Accordingly, we choose a weighting function
hat emphasizes the contributions to the cost functional
orresponding to small-amplitude data [14]. In particular,
he weighing function wl�r��� is given by

wl�r � �� =
1

Il
obs�r � �� + �

, �10�

here the positive regularization parameter � allows one
o manage the exact zeros in the data [14]. Note this
eighting strategy turns out to be particularly effective
hen undersampled data (with respect to the rules given

n Section 2) are available, as it actually increases the
mount of independent equations one may exploit [14].
The minimization of J under the constraints of Eq. (6)

an be cast as the global minimization of the cost func-
ional

L�
,J� = �
l=1

L

�
l
Il
obs − �El

i + KJl�
��2
W�

2

+ �l
Jl − 
El
i − 
Gmod�Jl�
D

2 	, �11�

here �l are appropriate weighting coefficients, taken
ere as �l

−1= 
El
i
D

2 , with 
 · 
D
2 being the unweighted L2

orm over D. The gradients of the cost functional, which
re derived according to the general strategy outlined in
22], are given by

�
L = − 2�
l=1

L

�l�El
i + Gmod�Jl��*�Jl − 
El

i − 
Gmod�Jl��,

�12�

�Jl
L = 4
lK†��El

i + KJl��Iobs − �El
i + KJl�2�wl�

+ 2�l�I − 
Gmod�†�Jl − 
El
i − 
Gmod�Jl��, �13�

here † stands for the transpose conjugate operation,
* for the conjugate operation.

A standard gradient-based minimization scheme can
ow be employed to obtain an estimation of the dielectric
roperties of the scatterer. Of course, additional a priori
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nformation (e.g., positiveness, lossless nature of the tar-
ets, etc.) can also be considered during the iterative
rocess.

. Choice of Starting Guess
n important point in the minimization of Eq. (11) is the

hoice of the starting guess, i.e., the initial distribution of
he auxiliary function and of the contrast source inside
he scattering domain. Different answers can be found in
he literature.

A very popular choice is the background solution, which
onsists of choosing an initial contrast function in D
lightly different from zero. Then the corresponding aux-
liary function 
 is determined according to Eq. (5), while
he contrast source is evaluated by solving Eq. (4). Of
ourse such a choice, by neglecting the presence of the tar-
et in the initial step, does not contain any a priori infor-
ation.
A second possible choice, more useful and widely used

n the framework of the source-type integral-equation-
ased inversion methods, is the backpropagation solution
18]. In its original formulation, the initial contrast source
s first retrieved from the scattered field, which is as-
umed to be known in both amplitude and phase. Then
he contrast function, and thus the auxiliary function in
he framework of the CS-EB inversion method, are deter-
ined by solving Eq. (4) in terms of the contrast function,

sing the contrast source distribution previously deter-
ined.
Of course, this kind of strategy cannot be applied in the

resent framework because of the lack of information on
he phase distribution. Therefore, a modified version of
he above backpropagation solution has been derived. The
ey idea is to assume an initial distribution of the con-
rast source in D given by the incident field (which is
nown or estimated [17]) times a constant given, for in-
tance, by the average value of the auxiliary function in D
or of the contrast function in the framework of the CS in-
ersion method [18]). Then, to derive a suitable distribu-
ion of the initial auxiliary function and thus of the con-
rast function, Eq. (4) is solved in terms of the auxiliary
unction, according to the original strategy. The achieved
esult is denoted in the following as the modified back-
ropagation solution.
In particular, once the contrast source distribution has

een initialized as follows:

Jl,0�r� = �El
i�r�, �14�

herein � is a real constant to determine according to the
vailability of some information on the nature of the tar-
ets (lossless nature, approximate mean value of the per-
ittivity distribution, etc.), then the initial distribution of

he auxiliary function is obtained by minimizing the cost
unctional


0�r� = min
ap


Jl,0 − 
El
i − 
Gmod�Jl,0�
D

2 , �15�

here �ap	p=1
P are the auxiliary function coefficients as de-

ned in Eq. (7). As shown in the following, this simple
odification of the original backpropagation solution al-

ows to improve the final reconstructions. Note that, in
hat case, no a priori information on the nature of the tar-
et has been considered, except for an approximate
nowledge of the contrast average over D. Of course, if
ore information on the objects are available, such as

heir lossless nature or some positivity constraints on the
eal part of the permittivity distribution, one can improve
he quality of the starting guess and therefore the final
esults.

. FEATURES AND LIMITATIONS OF THE
WO-STEP APPROACH: A BRIEF
VERVIEW
s recalled in the introduction, the problem of recon-
tructing the unknown contrast from amplitude-only
easurements of the total field has been previously ap-

roached from a different perspective. The devised
ethod, conceptually alternative to direct ones, such as

he one presented in Section 3, envisages a solution pro-
edure that splits the phaseless imaging problem into two
teps.

In the first step, a preliminary estimation of the ampli-
ude and phase patterns of the scattered fields (i.e., the
sual input of an inverse scattering approach) is per-
ormed solving a quadratic nonlinear inverse problem
7,13,17]. In particular, the overall complex scattered field
attern is represented by means of P Fourier harmonic
oefficients, f= �f1 , . . . , fP	, where, according to the proper-
ies recalled in Section 2, P= �2kbRD�2. Then, the following
uantity has to be minimized:

F�f� = �
l=1

L


Il
obs − �El

i�2 − �El
s�2 − 2Re�El

iEl
s*�
W�

2 . �16�

or this class of inverse problems, it is known that the oc-
urrence of false solutions can be avoided, provided that
he ratio among the number of independent data (here
he samples of Iobs) and the number of real unknowns
here given by the real and imaginary parts of f) is larger
han 3 [14]. In directing the reader to [7] for a more de-
ailed discussion, it is worth recalling here that the inter-
erence term in the available data between the incident
nd scattered fields can be conveniently exploited in this
ramework to fulfill the above-mentioned condition and
hereby achieve a robust estimate of the (complex) scat-
ered field pattern.

In particular, it turns out that, given the size of the
inimum circle RD that encloses the targets, a proper set-

ing of the measurement setup parameters (i.e., the ra-
ius R� of the circumference in which the probes are lo-
ated) is sufficient to match the desired ratio. For the
eometry at hand (see Fig. 1), the field properties and rep-
esentations recalled in Section 2 simply leads to R�

Rcr= �−1+�6�RD, which thus rules the proper choice of
� [7]. Of course, when this condition cannot be realized

for instance, due to some physical constraints on the
etup dimensions) the solution of the quadratic inverse
roblem may result in an unreliable estimate of the pat-
ern sought [7,17]. It is worth noting that similar rules
an be derived also in the case of aspect-limited data [13]
y properly taking into account the different geometry.
The second part of the two-step approach consists in a

raditional inverse scattering problem and can therefore
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e pursued by taking advantage of any of the many meth-
ds developed in the literature so far. For the sake of com-
arison, we will consider the same CS-EB scattering
odel as in Section 3. By denoting with El

est the estimated
cattered field (amplitude and phase), the cost functional
o be minimized is now given by [20]

L�
,J� = �
l=1

L

�
l
ˆ 
KJl − El

est
�
2 + �l
Jl − 
El

i − 
Gmod�Jl�
D
2 	,

�17�

here, different from the one-step approach and accord-
ng to its usual definition [18,20], 
l

ˆ −1= 
El
est
�

2 and �l is
he same as in Eq. (11).

By comparing the first term of Eq. (17) to the corre-
ponding one in the single-step cost functional of Eq. (11),
ne can immediately note that the two-step approach is
haracterized by a lower degree of nonlinearity [19] with
espect to the parameters embedding the unknowns of
he inverse problem. In particular, while the first term in
q. (17) depends on the unknown contrast source Jl in a

inear way, the corresponding term in Eq. (11) is related to
ts square amplitude, thus passing from a linear depen-
ence to a nonlinear one. Because of the local nature of
he adopted optimization method, such a circumstance
as a key role in obtaining accurate reconstructions of the
nknown permittivity maps [22]. In particular, the single-
tep approach results turns out to be more sensitive to the
tarting guess. Accordingly, when the conditions on the

ig. 2. (Color online) TwinDielTM dataset: Intensity and phase
onstructed by solving Eq. (16) of the two-step procedure in Sect
easurement setup make it applicable, the two-step pha-
eless imaging method has to be preferred.

. EXPERIMENTAL RESULTS
he performances of the two phaseless imaging ap-
roaches described in Section 3 and Section 4 have been
ested using the experimental data provided by the Insti-
ute Fresnel of Marseille [23–25]. In these experiments,
easurements are collected under an aspect-limited con-
guration in which, for each position of the primary
ource 	l� �0° ,360° �, measurements are gathered over
n open arc 	r� �	l+60° ,	l+300° �. For all the examples
onsidered, the working frequency is 4 GHz. The domain
nder test is taken as a square region of 2.8 � side, � be-

ng the wavelength in free space, subdivided into 46
46 pixels for the first two examples and 80�80 in the

ast one, according to the metallic nature of the target.
As the overall number of scattering experiments (L,

umber of sources and M, number of receivers) is depen-
ent on the experiments considered, they will be given for
ach case. The iterative procedure is stopped when the
ifference between the previous value of the cost func-
ional adopted and the actual one is less than 1.0�10−4.
oreover, note that when the modified backpropagation

olution is used as a suitable starting guess, the param-
ter � in Eq. (14) has been fixed to 1.0 in all the numerical
xperiments.

As the database provides measurements of amplitude
nd phase of the total and incident fields, we can conve-

rns of (a), (b) the measured scattered fields and (c), d) those re-
patte
ion 4.
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iently exploit the measured phase of the total field to
heck the accuracy of both phaseless imaging approaches
hat we present.

. TWINDIELTM Dataset
s first example, we have considered the TWINDIELTM
ataset [23] consisting of two dielectric homogeneous cyl-
nders of radius 1.5 cm and permittivity 3±0.3, approxi-

ately positioned at �−4.5,0� cm and �4.5,0� cm, respec-
ively. This dataset is known in the literature as a
enchmark for nonlinear inverse scattering methods, as
inearized approaches are understood to fail when applied
o it. In this experiment, L=36 source positions and M
72 receiver positions have been considered.
Let us start to apply the two-step procedure of Section

. In particular, by using the knowledge of the incident
eld and of the measured square amplitude distribution
f the total field on the 240° arc, the Fourier harmonic co-
fficients of the scattered field are evaluated by minimiz-
ng Eq. (16). The number of coefficients (here P=11�11)
s chosen according to the electrical dimension of the do-

ain investigated and a random distribution has been
sed as a starting guess in the quadratic minimization
rocedure.
By comparing the actual scattered field (see Figs. 2(a)

nd 2(b)) and the retrieved one (see Figs. 2(c) and 2(d), it
an be observed that a good reconstruction is achieved,
oth in amplitude and in phase, although a slightly worse
econstruction is obtained at the end of the observation
rc as a result of the truncation of the measurement do-
ain. It is also interesting to note that since the radius of

he circle in which the receivers are located is R�

1.765 m and Rcr=0.2113 m, the condition R��Rcr holds,
hus preventing occurrence of local minima [7].

The second and final part of the two-step procedure
eals with a standard inverse scattering problem, ad-
ressed here using the CS-EB method. The background
olution has been used as a starting guess in the minimi-
ation of Eq. (17). After representing the unknown auxil-
ary function 
 and then the contrast function � in terms
f P=11�11 Fourier harmonics in the minimization pro-
edure, the very accurate reconstruction of the real part of
he contrast is achieved and shown in Fig. 3. Note that no
priori information has been used at all. The correspond-

ng imaginary part, in agreement with the lossless nature
f the targets, is negligible with respect to the real one
0.10 is the maximum value of the estimated imaginary
art). The maximum value of the estimated contrast func-
ion is 2.1, which is within the measurement accuracy.
he computation takes just a few minutes on a standard
esktop PC.
It is worth noting that a comparable reconstruction is

ctually obtained when using the measured (amplitude
nd phase) scattered fields directly in Eq. (17), thus con-
rming the possibility of performing a faithful phaseless
uantitative imaging with no loss of accuracy.
Let us now compare the above result with that ob-

ained by the one-step approach of Section 3, where the
ntensity data are directly incorporated into the minimi-
ation process. The auxiliary function 
 and the contrast
unction are still represented in terms of 11�11 Fourier
armonics. The background solution is first used as a
tarting guess and the results obtained are represented in
ig. 4. Due to the higher degree of nonlinearity of the one-
tep inversion problem, the minimization procedure is
ore sensitive to the starting guess and gets stuck in a

ocal minimum. Indeed, even though the shape of the two
argets is clearly defined, their permittivity value is much
ower than the actual one.

In order to improve the results, the modified back-
ropagation solution is now used as a starting guess. As
hown in Fig. 5, the use of this different initialization
eads to an improved reconstruction for the real part of
he contrast. Again, the corresponding imaginary part is
egligible with respect to the real one, being 0.12 its
aximum estimated value.

. FOAMDIELEXTTM Dataset
s a second example, we have considered the
OAMDIELEXTTM dataset [24,25], which corresponds to
n inhomogeneous target embedded in free space. The
arget consists of two purely dielectric cylinders tangent
o each other. The larger one is centered and presents a
elative permittivity of 1.45±0.1 and a radius of 0.04 m;

ig. 3. (Color online) Real part of the reconstructed contrast
unction for the TWINDIELTM dataset when using Eq. (17) of the
wo-step procedure in Section 4. The maximum value of the esti-
ated contrast function is 2.10.

ig. 4. (Color online) Real part of the reconstructed contrast
unction for the TWINDIELTM dataset with the one-step approach
f Section 3. The background solution has been used as starting
uess. The maximum value of the estimated contrast function is
.67.
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he smaller has a relative permittivity of 3±0.3 and a ra-
ius of 0.015 m. In this case, L=8 source positions and
=241 receiver positions are considered. Due to the very

imited number of source positions available in this ex-
mple, the intensities of all the involved fields are not
roperly sampled (see Section 2). Therefore, worse results
re expected with respect to the previous example, both in
erms of reconstruction of the scattered field and of the
ermittivity profile.
Let us consider first the two-step procedure. After mod-

ling the unknown complex scattered field as a superpo-
ition of P=11�11 Fourier harmonics, we have solved the
roblem of Eq. (16). Then the unknown auxiliary function
nd the contrast function have been represented in terms
f P=11�11 Fourier harmonics and the cost functional in
q. (17) has been minimized starting from the back-
round solution as a suitable starting guess. The real part
f the reconstructed contrast is shown in Fig. 6, while the
maginary one, according to the lossless nature of the tar-
ets, is again negligible.

ig. 5. (Color online) Real part of the reconstructed contrast
unction for the TWINDIELTM dataset obtained with the one-step
rocedure of Section 3. The modified backpropagation solution
as been used as starting guess in the inversion procedure. The
aximum value of the estimated contrast function is 1.85.

ig. 6. (Color online) Real part of the reconstructed contrast
unction for the FOAMDIELEXTTM dataset obtained when follow-
ng the two-step approach of Section 4. The background solution
as been used as starting guess. The maximum value of the es-
imated contrast function is 1.34.
It is interesting to note that, as expected, the quality of
he reconstruction is worse than in the previous example,
ven though the presence of two targets is clearly re-
rieved together with their size and shape. In particular,
he reduced number of independent data at our disposal
or the inversion of the quadratic operator in the first step
we went from the 36 sources of the first example to 8 for
his one) makes it more difficult to extract the scattered
eld from the intensity-only data of the total field, thus
egatively affecting the accuracy of the final reconstruc-
ion of the contrast function in the second step.

Let us now consider the one-step procedure. The un-
nown auxiliary function and the contrast function are
epresented in terms of P=11�11 Fourier harmonics. By
sing the modified backpropagation solution as starting
uess, the real part of the contrast function reported in
ig. 7 is achieved, whose corresponding imaginary part is
egligible (0.07 is now its maximum value).
As can be seen, by using an accurate starting guess, the

nal quality of the reconstruction is accurate, both in
erms of size of the targets and their shapes, even if the
ontrast values are slightly underestimated with respect
o the actual ones, in agreement with the reduction of in-
ependent information. It is also interesting to note that
he achieved results are better than the ones obtained by
sing the two-step approach of Section 4, thus confirming
he expected complementarity and capabilities of the in-
erse profiling approaches we discuss. In particular, this
xample shows that when the conditions for applying the
wo-step procedure do not hold, the one-step approach is a
aluable alternative.

. FOAMMETEXTTM Dataset
o show the capability of the one-step procedure in suc-
essfully retrieving the imaginary part of the unknown
ontrast that is present in the case of lossy or metallic tar-
ets, we have considered the FOAMMETEXTTM dataset
24,25], which is related to an inhomogeneous target
ade of two circular cylinders. The smaller one, located

utside the dielectric one, is metallic, while the dielectric
ylinder is characterized by a relative permittivity of

ig. 7. (Color online) Real part of the reconstructed contrast
unction for the FOAMDIELEXTTM dataset by using the one-step
pproach of Section 3. The modified backpropagation solution
as been used as starting guess. The maximum value of the es-
imated contrast function is 1.75.



1
l

m
t
a
h
t
i
d
c
t
w
t
o

g
i

6
I
t

m
p
M
w
t

s
t
q
o
w

p
r
d
s
t
p

t
m
s
t
t
w
t
o
v
fi

a
b
w
O
i
t

p
d
a
q
o
a
t

e
s
b
c
t
p
e
s
t
c
t
(
u
i
m
o
w

F
f
a
h

F
t
s
t

D’Urso et al. Vol. 25, No. 1 /January 2008 /J. Opt. Soc. Am. A 279
.45±0.1 and a radius of 0.04 m. The radius of the metal-
ic cylinder is 0.015 m. In this case, L=18 and M=241.

By still considering P=11�11 unknown Fourier har-
onics for the auxiliary function and the contrast func-

ion and by using the modified backpropagation solution
s starting guess, the results reported in Figs. 8 and 9
ave been achieved. As can be seen, the metallic nature of
he smaller cylinder has been clearly estimated as well as
ts size and shape. We can thus conclude that the proce-
ure can indeed reconstruct the imaginary part of the
ontrast function. It is also worth noting that the charac-
eristics of the dielectric cylinder have been estimated as
ell, even though the strong reflection from the metallic

arget does not allow us to achieve an accurate estimation
f its shape and size.

Note that the capability to image lossy or metallic tar-
ets by means of the two-step approach has been already
nvestigated and proved under proper conditions in [7,13].

. CONCLUSION
n this paper two different strategies for the characteriza-
ion of two-dimensional targets using phaseless measure-

ig. 8. (Color online) Real part of the reconstructed contrast
unction for the FOAMMETEXTTM dataset by using the one-step
pproach of Section 3. The modified backpropagation solution
as been used as starting guess.

ig. 9. (Color online) Imaginary part of the reconstructed con-
rast function for the FOAMMETEXTTM dataset by using the one-
tep approach of Section 3. The modified backpropagation solu-
ion has been used as starting guess.
ents of the total fields have been compared by using ex-
erimental data measured at the Institute Fresnel of
arseille from homogeneous and inhomogeneous targets,
ith a combination of purely dielectric and metallic ma-

erials.
In the first inversion method, the intensity-only mea-

ures of the total field have been directly incorporated in
he minimization scheme, while the accuracy and the
uality of the final results have been improved by means
f a proper definition of the starting guess and a suitable
eighting of the cost functional considered.
In the second scheme, originally proposed in [7], one ex-

loits the properties of the scattered fields and the theo-
etical results of the inversion of quadratic operators to
erive a two-step solution strategy in which the (complex)
cattered fields embedded in the available data are re-
rieved first, and then a traditional inverse scattering
roblem is solved.
In both cases, the analytical properties and representa-

ions of the involved fields allow one to properly fix the
easurement setup and to identify the more convenient

olution strategy. In particular, as discussed by means of
heoretical considerations and supported by experiments,
he two-step strategy achieves better results as compared
ith the one-step approach because of its better control of

he overall nonlinearity of the inverse problem. On the
ther hand, when the measurement setup does not pro-
ide enough independent data to accurately pursue the
eld retrieval, the one-step approach has to be preferred.
It is interesting to note that, while the Marseille data

re usually elaborated by using multifrequency (i.e.,
roadband) data, the accurate results achieved herein
ith both approaches rely only on monochromatic data.
f course, use of multifrequency information can further

mprove the final results in terms of size, shape estima-
ion, and permittivity value.

As further comment, note that, in order to have a com-
letely phaseless imaging method, knowledge of the inci-
ent field, both in amplitude and in phase, can also be
voided. In particular an additional step would be re-
uired in order to estimate the phase of the incident field
n the measurement domain before using one of the im-
ging procedures discussed in this paper. For more de-
ails, the reader is directed to [17].

As future work, note that the development of new and
ffective inversion approaches starting only from inten-
ity data of the scattered field instead of the total field can
e pursued. This situation is of interest in optical appli-
ations where the capability of imaging dielectric and me-
allic targets and developing inversion strategies based on
haseless measurements can open the way to very inter-
sting applications. On the other side, such a problem
ets new and challenging difficulties. As a matter of fact,
he amount of independent data that can be exploited is
onsiderably reduced both because one cannot exploit in-
erference among the incident and the scattered fields
see Section 4), and because the actual measurement set-
ps produce aspect-limited data [3,4]. As a consequence,

n order to compensate for the lack of information, both a
ultifrequency approach to the problem and/or the devel-

pment of innovative measurement configurations (as
ell as new inversion procedures) are needed.
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PPENDIX A
he aim of this Appendix is to briefly derive the CS-EB
cattering equation [20] adopted in the optimization prob-
ems considered in this paper. The starting point is the
raditional contrast Source integral equation (3). By add-
ng and subtracting the contrast source function J�r� in
he integral term in this latter, one gets

J�r� − ��r�Ei�r� = ��r� � �
D

G�r,r���J�r�� − J�r��dr�

+ ��r�J�r� � �
D

G�r,r��dr�. �A1�

Then, by grouping with respect to J�r�, one achieves

J�r� − ��r�J�r�fD�r� = ��r�Ei�r� + ��r� � �
D

G�r,r��

��J�r�� − J�r��dr�, �A2�

here

fD�r� =� �
D

G�r,r��dr�. �A3�

ow, by introducing


�r� =
��r�

1 − ��r�fD�r�
,

Gmod�J� =� �
D

G�r,r���J�r�� − J�r��dr�

=� �
D

G�r,r��J�r��dr� − J�r�fD�r�, �A4�

nd replacing them into Eq. (A2), the CS-EB scattering
q. (4) is achieved [20].
Some comments are now in order. First, note that the

S-EB equation has been derived without any approxima-
ion from the CS one, thus being completely equivalent to
t. Moreover, since the two equations have the same struc-
ure, one can exploit all numerical algorithms and tools
lready developed for the CS equation for the solution of
he CS-EB one. On the other hand, a new radiation op-
rator and a different auxiliary function—see Eq. (4)—are
nvolved in the CS-EB equation. Therefore, as detailed in
20], Eq. (3) and Eq. (4) have the same information con-
ent, but the CS-EB equation exhibits a different, actually
ower, degree of nonlinearity [19] of the relationship
mong parameters embedding dielectric characteristics
nd the scattered fields. As such, it defines a new and con-
enient model for solving forward and inverse scattering
roblems [20].
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